跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃明和
研究生(外文):ming-her hwang
論文名稱:鋁品工廠懸浮微粒之物化特徵及污染源解析
論文名稱(外文):Physicochemical Characteristics and Source Apportionment of Suspended Particles in an Aluminium Plant
指導教授:袁中新袁中新引用關係
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:139
中文關鍵詞:雙峰分佈鋁品工廠指紋資料受體模式
外文關鍵詞:Aluminum plantsFingerprint.Bimodal distributionReceptor model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對鋁品工廠主要製程作業區及廠區周界,選擇適當地點進行懸浮微粒之量測,藉以瞭解鋁品工廠各製程作業區懸浮微粒之污染現況(包括:懸浮微粒質量濃度與時間變化情形、落塵量及空間分佈、微粒化學成份分析及粒徑分佈等),並建立鋁品工廠懸浮微粒之指紋資料。此外本研究亦嘗試利用受體模式解析鋁品工廠逸散性污染源對環境周界之貢獻程度,釐清懸浮微粒污染的可能來源,期能做為降低廠房內懸浮微粒濃度及鋁製產品不良率之依據,對於改善鋁品工廠空氣污染現況有所助益。
本研究結果得知,屬於燃燒性污染源熔鑄、鑄軋及低週波爐等製程作業區,其廠房內之懸浮微粒濃度較高,污染來源大部分份係來自於生產製程或機械操作所排放。而屬於非燃燒源製程之熱軋、冷軋及鋁箔工廠等生產製程作業區,其TSP濃度一般均低於200 µg/m3以下。此外各製程作業區懸浮微粒之粒徑分佈,大部份呈現雙峰分佈(bimodal distribution),屬於非燃燒污染源製程最高峰出現在0.18~0.56 µm之微粒,次高峰則為5.6~11.5 µm之微粒。而屬燃燒性污染源熔鑄製程微粒最高峰出現在11.5~24.7µm之微粒,次高峰則出現0.56~1.0 µm之微粒,鋅鑄造低週波電爐作業區懸浮微粒則以細微粒(1.0~3.2 µm)為主。
鋁品工廠製程作業區懸浮微粒(PM2.5及PM10)之指紋資料(fingerprint)顯示,熱軋製程作業區金屬成份以Al、Zn、K、Cr等為指標元素,其中Cr元素來源可能與製程中使用鉻酸原料有關,水溶性離子成份則以SO42-及Cl-所佔比例最高。碳成份佔總質量約22.0%左右,OC/EC比值為2.54及2.80。而熔鑄製程金屬成份以Al 所佔比例最高,其次為Zn、K、Ca、Fe等,水溶性離子A/C比值約0.80,其中
以SO42-比例最高,Cl-、F-、K+、NH4+次之,碳成份佔總質量分別為19.2%及27.3 %,OC/EC比值為1.21及1.07。此外,低週波電爐製程金屬以Zn所佔比例最高(23.9及27.2%),K、Ca、Fe等次之,水溶性離子成份主要以Cl-所佔比例最高,其次為NO3-、Ca2+、K+等離子,A/C比值約0.7,碳成份佔PM2.5及PM10總質量為54.8%及51.0 %,OC/EC比值約2.9。
由受體模式(CMB)推估廠區周界懸浮微粒之污染來源結果得知,鋁品工廠主要製程(包含熱軋、熔鑄及低週波電爐等製程)逸散粒狀污染物,對廠區周界懸浮微粒之污染貢獻率介於5.9∼13.2%間,其它則以交通污染源(含道路揚塵、車輛尾氣排放)貢獻頻率最多,貢獻率介於28.1%∼37.3%間。而鄰近工廠污染則以石化業製程(燃油加熱盧、鍋爐)貢獻頻率最多,貢獻率介於17.0%∼23.0%間,其次為水泥製造業貢獻率介於11.2%∼20.7%間,鋼鐵製造業貢獻率介於2.5%∼6.5%間,資源回收廠(都市垃圾焚化爐)貢獻率介於2.3%∼5.0%間,而海水飛沫貢獻率介於4.3%∼7.1%間,其他未解析之污染源貢獻率介於7.0∼11.8%間。
The objective of the study was to investigate the air pollution of working place and the fence of aluminum plants. Four sites were selected for conducting the sampling of particulate matter(PM)to establish the fingerprints of PM in aluminum plants. Moreover, the receptor model was used to apportion the major contributing sources of particulate matter.
The results of the study showed that PM concentrations in the working places were high, which might be emitted from manufacturing or mechanical operating process in the melting furnace, the continuous casting, and etc. The total suspended solid concentrations from non-combustion pollution source (such as hot rolling , cold rolling, and plate industry) were usually below 200 µg /m3. Moreover, the size distributions of PM in working places were usually bi-modal type. The particle sizes with the highest concentration in five and coarse fractions were 0.18~0.56 µm respectively. As for the combustion sources, the particle sizes with the highest concentration were 0.56~1.0 µm and 11.5~24.7 µm, respectively. The particle emitted from zinc casting source were mostly in the fine particle fraction(1.0~3.2 µm).
The fingerprint profiles of PM from the working places showed that the major metal content of the hot rolling were Al, Zn, K, Cr. Among then, Cr might be source of from the using of chromate acid. The most abundant water-soluble ions were sulfate ion and chlorine and chloride. The carbon content accounted for about 22% of the PM mass. The ratio of organic carbon to elemental carbon were 2.54 and 2.80. The major metal content of melting process was Al, the minor metals were Zn, k, Ca, Fe. The ratio of anion to cation(A/C) was about 0.80. The most abundant ion sulfate, while the chloride, the fluoride, potassium, and the ammonium ions were minor ones. The carbon content accounted about 19.2% and 27.3% of PM mass respectively. The ratio of organic carbon to elemental carbon were 1.21 and 1.07. Moreover, the major metals were k, Ca, Fe. The major ion was chloride, while the nitrate calcium and potassium ions were minor ones. The A/C was 0.7. The carbon content accounted for 54.8% and 51.0% of PM2.5 and PM10, respectively. The ratio of organic carbon to elemental carbon was about 2.9.
The results obtained from receptor modeling showed that the contribution percentage of fugitive PM from the aluminum plant (including hot rolling, melting furnace, and low-wave furnace) was between 5.9 and 13.2%, Another major source was traffic refracted pollution with a contribution percentage between 17.0% and 23.0%, Fur then more, in the surrounding PM, was between 11.2% and 20.7%, while the contribution from the steel plant and Moreover, the municipal incineration was 2.5~6.5% and 2.3~5.0%,respectively. The sea salt contributed 4.3~7.1% of PM mass. The unsolved percentage was 7.0~11.8%.
摘要………………………………………………….……………... Ⅰ
英文摘要………………………………………….……………...... Ⅲ
目錄………………………………………………………………… Ⅴ
表目錄……………………………………………………………… Ⅸ
圖目錄……………………………………………………………… XI
第一章 前言…………………………………………………….... 1-1
1-1 研究緣起………………………………………………… 1-1
1-2 研究目的………………………………………………… 1-2
1-3 研究流程………………………………………………… 1-3
第二章 文獻回顧………………………………………………... 2-1
2-1懸浮微粒之性質…………………………………………. 2-1
2-1-1懸浮微粒之定義………………………………….. 2-1
2-1-2懸浮微粒的形成機制…………………………….. 2-2
2-1-3懸浮微粒之影響………………………………….. 2-4
2-1-4懸浮微粒之物化特性…………………………….. 2-8
2-1-5懸浮微粒之可能來源及貢獻推估……………….. 2-13
2-2 鋁品工廠生產製程介紹……………………………….. 2-15
2-2-1熔鑄及鑄製程…………………………………….. 2-15
2-2-2低週波電爐製程………………………………….. 2-17
2-2-3熱軋及冷軋製程…………………………………... 2-17
2-2-4 鋁箔生產製程……………………………………. 2-18
2-3相關鋁品產業之研究成果…………………………..…. 2-18
2-4污染源解析……………………………………………… 2-23
2-4-1受體模式之基本理論…………………………….. 2-23
2-4-2化學質量平衡法………………………..………… 2-25
2-4-3受體模式之應用…………………………………... 2-27
第三章 研究方法……………………………..…………………. 3-1
3-1 採樣地點選擇…………………………………………… 3-1
3-2 採樣時間與頻率………….……………………………... 3-1
3-3 懸浮微粒採樣方法……………………………………… 3-2
3-3-1 高量採樣器……………………………………….. 3-2
3-3-2 雙粒徑分道採樣器……………………………….. 3-4
3-3-3 微孔均勻沉降衝擊器…………………………….. 3-7
3-3-4 旋轉式衝擊器……………………………………. 3-9
3-3-5 落塵筒…………………………………………..... 3-9
3-4懸浮微粒成份分析方法…………………………………. 3-11
3-4-1 水溶性離子成份分析…………………………….. 3-11
3-4-2 碳成份分析……………………………………….. 3-12
3-4-3 金屬成份分析…………………………………….. 3-14
3-5品保與品管………………………………………………. 3-15
3-5-1 採樣方法之品保與品管………………………….. 3-15
3-5-2 分析方法之品保與品管………………………….. 3-17
第四章 結果與討論…………………………………………...... 4-1
4-1製程作業區懸浮微粒之質量濃度……………………… 4-1
4-1-1熱軋製程之懸浮微粒濃度………………………. 4-1
4-1-2冷軋製程之懸浮微粒濃度……………………… 4-4
4-1-3熔鑄製程之懸浮微粒濃度……………………… 4-5
4-1-4鑄軋製程之懸浮微粒濃度………………………. 4-8
4-1-5鋁箔製程之懸浮微粒濃度……………………….. 4-10
4-1-6 低週波電爐製程之懸浮微粒濃度………………. 4-14
4-2製程區懸浮微粒之粒徑分析……………………………. 4-16
4-2-1熱軋製程之粒徑分佈…………………………….. 4-17
4-2-2冷軋製程之粒徑分佈…………………………….. 4-18
4-2-3熔鑄製程之粒徑分佈…………………………….. 4-19
4-2-4 鑄軋製程之粒徑分………………………………... 4-20
4-2-5 鋁箔製程之粒徑分佈…….……………………… 4-21
4-2-6 低週波電爐製程之粒徑分佈….………………… 4-22
4-3廠區周界懸浮微粒採樣結果…………………….……... 4-24
4-3-1 廠區周界懸浮微粒之質量濃度……..…………… 4-24
4-3-2 落塵量採樣結果.…………………………………. 4-28
4-3-3 廠區周界懸浮微粒濃度之時空變化…………….. 4-30
4-3-4 廠區周界懸浮微粒之粒徑分佈………………….. 4-30
4-4製程作業區懸浮微粒之指紋資料………………………. 4-34
4-4-1熱軋製程懸浮微粒指紋資料……………………... 4-34
4-4-2 冷軋製程懸浮微粒指紋資料…………………….. 4-35
4-4-3 熔鑄工場懸浮微粒指紋資料…………………….. 4-36
4-4-4 鑄軋工場懸浮微粒指紋資料…………………….. 4-37
4-4-5 鋁箔製程懸浮微粒指紋資料…………………….. 4-38
4-4-6低週波電爐製程工場懸浮微粒指紋資料………... 4-39
4-4-7各製程作業區指紋資料之比較…………………... 4-40
4-5廠區懸浮微粒污染來源解析……………………………. 4-52
4-5-1 廠區周界總懸浮微粒組成分析結果…………….. 4-52
4-5-2 污染源資料檔之建立…………………………….. 4-55
4-5-3 懸浮微粒污染源解析…………………………….. 4-57
第五章 結論與建議…………………………………………...... 5-1
5-1結論………………………………………………………. 5-2
5-2建議………………………………………………………. 5-4
參考文獻
附錄A、高量採樣氣流量校正紀錄
附錄B、粒狀物採樣及分析紀錄表
附錄C、成份分析檢量線
附錄 D、現場採樣點照片
Chu, S.H., “Meteorological Conditions Conducive to Regional High Particulate Matter Episodes,” Air & Waste Management Association’s. 90th Annual Meeting & Exhibition, June 8-13, 1997, Toronto, Ontario, Canada 97-MP112.06.
Chow, J.C., J.G. Watson, Z.Lu , D.H. Lowenthal, C.A. Frazier, P.A. Solomon, R.H, Thuillier and K. Magliano, “ Descriptive analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX,” Atmos. Environ., Vol. 30(12), pp. 2079-2112, 1996.
Fiurnier, D.J., W.E. Whitworth, J.W. Lee and L.R. Waterland, “The Fate of Trace Metals in a Rotary Kiln Incinerator with a Venturi/Packed Column Scrubber,” U. S. EPA/600/S2-90/043, 1991.
Fang, S.H and H.W. Chen, “Air quality and Pollution Control in Taiwan,” Atmos. Environ. Vol. 30, pp. 735-741, 1996.
Chan, Y.C., R.W. Simpson, G.H. Mctainsh, P.D. Vowles, D.D. Cohen and G.M. Bailey, “Source Apportionment of Visibility Degradation Problems in Brisbane (Australia) Using the Multiple Linear Regression Techniques,” Atmos. Environ., Vol. 33, pp. 3237-3250, 1999.
Gray, H.A., G.R. Cass and J.J. Huntzicker, “ Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentration in Los Angles,” Environ. Sci. Technol., Vol. 20, pp. 580-589, 1986.
Hildemann, L.M., G.R. Markoeski and G.R. Cass, “ Chemical Composition Of emission from Urban Source of Fine Organic Aerosol,” Environ. Sci. Technol., Vol. 25 , pp. 744-759, 1991.

Henry, R.C., P. K. Hopke, C.W. Lewis and H.J. Williamson, “Review of Receptor Model Fundamentals,” Atmos. Environ., Vol. 18, pp. 1507-1515, 1984.
Lundgren, D.A., R.M. Burton, “Effect of Particle Size Distribution on the Cut Piont Between Fine and Coarse Ambient Mass Fractions,” Inhalation Toxicology, Vol. 7(1), pp. 131~148, 1995.
Ning, D.T., L.X. Zhong and Y.S Chung, “Aerosol Size Distribution and Elemental Composition in Urban of Northern China,” Atmos. Environ., Vol. 30, pp. 2355-2362, 1996.
Pio, C.A., L.M. Castro, M.A. Cerqueira, I.M. Santos, F. Belchior and M.L. Salgueiro, “Source Assessment of Particle Air Pollutants Measured at the Southwest European Coast, ”Atmos. Environ., Vol. 30, pp.3309-3320, 1996.
Pakkanen, T.A. “Study of Formation of Coarse Particle Nitrate Aersol,” Atmos. Environ., Vol. 30(14), pp. 2475-2482, 1996.
Rogge, W.F., L.M. Hildemann , M.A. Mazurek , G.R. Cass and B.R.T . Simoneit, “Mathematical Modeling of Atmospheric Fine Particle Associated Primary Organic Compound Concentrations,” Journal of Geophysical Research , Vol. 101, pp. 19379-19394, 1996.
Turpin, B.J., J.J. Huntzicker and K.M. Adam,“ Intercomparison of Photoacoustic and Thermal-Optical Methods for the Measurement of Atmospheric Elemental Carbon” Atmos. Environ., Vol. 25, pp. 1381-1835, 1990.



U.S. EPA, “Receptor Model Source Composition Library”, Environmental Protection Agency Research Triangle Park, NC, U.S. Department of Commerce National Technical Information Service (NTIS), EPA-450/4 -85-002, 1984.
Watson, J.G., N.F. Robinson, C. Lewis, T. Coulter, J.C. Chow, E.M. Fujita, D.H. Lownethal, T.L. Conner, R.C. Henry and R.D. Willis,“ Chemical Mass Balance Receptor Model Version 8 (CMB8) User’s Manual,” Desert Research Institute Document No. 808, 1997.
Yatin, M., S. Tuncel, N.K. Aras, I. Olmez and S. Aygun, “ Atmospherictrace Element in Ankara, Turkey:1. Factors Affecting Chemical Composition of Fine particle,” Atmos. Environ., Vol. 34, pp. 1305-1318, 2000.
陳瑞仁、林志忠、張加欽、徐誌宏、陳信儒,”大氣中硝酸鹽及硫酸鹽之粒徑分佈及乾沉降速度”,第十三屆空氣污染控制技術研討會論文集,pp.1119-1126,1996。
吳義林、蔡德明,“高屏地區大寮測站PM10與PM2.5之組成份特徵研究”,一九九八年氣膠研討會論文集,pp.339-346,1998。
樓基中、袁中新,”台灣地區懸浮微粒空氣污染問題及防治之研究”,環保署研究報告,1995。.
鄭曼婷、鄭光宏、方國權、莊秉潔,”大氣懸浮微粒及水溶性陰陽離子之日夜乾沉降特性”,第十三屆空氣污染控制技術研討會論文專輯,pp.1145-1153,1996。
林銳敏、戴華山,”高雄市大氣懸浮微粒PM2.5及PM2.5-10之化學成份與來源推估”,高雄市政府環境保護局期末報告,1999


郭育良等,職業病概論,華杏出版股份有限公司,1998
李俊璋,”台北市空氣中懸浮微粒物理化學分析及學童肺功能之研究”,國立台灣大學環境工程研究所碩士論文,1982。
館正知,「重金屬中毒及其防止對策」,工業安全衛生,第21 期,pp. 24-30,1991。
樊邦棠,「環境工程化學」,科技圖書股份有限公司,pp. 311~318 ,1994。
吳家誠,「重金屬之化學種類分類與分析技術」,化學,第49卷,第4期,pp.316~322,1991。
蔣本基、張子琦,”懸浮微粒污染源與氣象因子相關性研究”,第十三屆空氣污染技術控制研討會論文專輯,pp557-566,1996.
張木彬,”垃圾焚化灰渣及飛灰中重金屬濃度及分佈之初步探討”,第九屆廢棄物處理技術研討會,pp. 181-193,1994。
袁中新、劉山豪,”高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,1998。
翁誌煌、袁菁,“高雄市空氣污染指標研析”高雄市政府環境保護局,2001。
王景良,”中部空品區污染源逸散粉塵的組成分析”,國立中興大學環境工程學系,碩士論文,台中 (2000)。
鄭曼婷、吳義林、廖崇圜、蔡德明“南高屏地區空氣污染總量管制研究—子計畫B2:受體模式對粒狀物管制對策方案之模擬分析與綜合評估”,行政院環境保護署研究報告,EPA-89-FA11-03-101。(2000)。

王竹方、蔣本基、謝嘉文, “空氣品質CMB受體模式與ISCST擴散模式之驗證與應用”,第二屆環境系統分析研討會,pp.169-183,民國88年。
蔣本基,“臺灣北、中部地區受體模式建立與應用研究(一)”,行政院環境保護署,1993。
葉松源、邱國書、許世傑、林文川,“非鐵金屬鑄造業鎔爐廢氣特性及控制技術”, 工業安全防治,第59期,pp. 48-50,1996。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top