跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡銘修
研究生(外文):Ming-hsiu Tsai
論文名稱:利用奈米級二氧化鈦鍍膜光催化處理醋酸廢水之研究
論文名稱(外文):A Study on Photocatalytic Treatment of Acetic Acid Wastewater by Nanostructured Film of TiO2
指導教授:楊金鐘楊金鐘引用關係
指導教授(外文):Gordon C. C. Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:116
中文關鍵詞:外加電壓二氧化鈦薄膜式光觸媒溶膠-凝膠法醋酸
外文關鍵詞:Acetic acidExternal bias voltageThin film photocatalystSol-gel processTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先利用溶膠-凝膠法(Sol-Gel Process)製備的TiO2鍍液,並經浸鍍及煅燒固定在ITO導電玻璃表面形成奈米級二氧化鈦鍍膜,再利用此鍍膜光催化處理含醋酸工業廢水,探討其在不同的變因(光強度、紫外光波長、鍍膜反應面積、pH值與外加電壓)下,其對污染物之光催化效能。實驗結果顯示,當燈管波長相同而光強度為10W、20W時,醋酸COD去除效率分別為6.7%與11.0%。而波長為365nm與312nm時,去除效率分別為11.0%與15.3%,光強度與紫外光波長皆會影響光催化之效果,其中,以紫外光波長之影響較為顯著,且光強度越高與波長越短,醋酸去除效果越好,其反應動力越趨向擬一階反應;在pH值的效應方面,pH= 3.18時之化學需氧量(COD)去除效率為pH=9.98時的3.6倍,顯示pH值越低,醋酸越容易吸附在鍍膜表面;在鍍膜反應面積的效應方面,當反應面積增加為三倍時,其COD去除效果提高為1.88倍;在外加電壓的效應方面,當電壓為5V、10V及15V時,其COD去除效率分別為66.8 ﹪、77.8%及84.6﹪,顯然,外加電壓至TiO2鍍膜可以抑制電子/電洞對的再結合,因而提高光催化效能,且在15V以內之光催化反應皆為擬一階反應。將上述最佳操作變因(外加電壓為15V、pH值為3.2±0.1、使用312nm(20W)紫外光燈管及反應面積為150cm2時)進行醋酸廢水之光催化反應,可以得知不同濃度醋酸廢水與擬一階反應速率K′有一定的關聯性(K′=1.7679(COD)-0.7547),反應速率常數會隨著COD值增加而呈現下降的趨勢。
In the work, photocatalytical treatment of acetic acid wastewater by nanostructured film of TiO2 under ultra-violet (UV) light illumination was studied. Nanosized TiO2 suspension was prepared by the sol-gel process. Then it was dip-coated on indium tin-oxide(ITO)glass, which could be used as the anode if applicable. Effects the UV light intensity, UV light wavelength, reactive area of TiO2 film, solution pH, and applied bias voltage on photocatalysis efficiency of acetic acid in term of COD removal were studied in this work. Experimental results have shown that a pseudo first-order kinetics was obeyed in all tests. In this study UV light of 312nm outperformed that of 365nm (15.3% vs. 11.0%). UV light intensity of 20W was also found to be superior to 10W with COD removal of 11.0% against 6.7%. COD removal at pH=3.18 was about 3.6 times greater as compared with that of at pH=9.98. When the reactive area of TiO2 film was increased to three times, the COD removal was almost doubled. An applied external voltage was found to enhance the removal of COD. When an external voltage of 15V was applied, the COD removal was increased to 84.6%. It is ascribed to an external voltage would prevent or lower the extent of electron-hole recombination. In this work, the pseudo first-order reaction rate equation K′=1.7679(COD)-0.7547 was obtained for various concentrations of acetic acid tested.
謝誌………………………………………………………………... i
摘要………………………………………………………………... ii
Abstract...…………………………………………………………... iii
目錄………………………………………………………………... iv
表目錄……………………………………………………………... ix
圖目錄……………………………………………………………... xi

第一章 諸論………………………………………………………. 1
1.1研究緣起…..……………………………………………… 1
1.2研究目的…..……………………………………………… 3
1.3研究項目…..………………………………………………. 4

第二章 文獻回顧…………………………………………………. 5
2.1醋酸的性質、應用及處理狀況…………….……….…… 5
2.1.1醋酸的性質………………………………………… 5
2.1.2醋酸廢水的產生與處理狀況………………………. 5
2.2光催化反應………………………………………………... 8
2.2.1光催化基本理論……………………………………. 8
2.2.2直接光解反應………………………………………. 8
2.2.3間接光解反應.……………………………………… 10
2.2.4紫外光光源種類……………………………………. 11
2.3半導體的特性……………………………………………... 12
2.3.1價帶及傳導帶.……………………………………… 12
2.3.2 n-型和p-型半導體.………………………………… 17
2.3.3半導體光催化劑之種類……………………….…… 20
2.3.4二氧化鈦光催化特性………………………………. 20
2.3.5半導體之異相光催化原理與機制…………………. 26
2.4光催化反應機制…………………………………………... 28
2.4.1光催化作用之基本原理.…………………………... 28
2.4.2光催化作用之反應機制…………………………… 28
2.4.3二氧化鈦分解有機物之路徑………………………. 30
2.5光催化觸媒之製備………………………………………... 33
2.5.1化學蒸鍍法…………………………………………. 33
2.5.2液相沈積法…………………………………………. 34
2.5.3溶膠-凝膠法………………………………………. 34
2.5.4光催化反應器………………………………………. 42
2.6 UV/TiO2光催化之影響因子……………………………... 44
2.6.1光強度的影響………………………………………. 44
2.6.2外加電壓的影響……………………………………. 45
2.6.3 pH的影響…………………………………………... 47
2.7醋酸光催化反應之可能路徑……………………………... 49

第三章 研究方法…………………………………………………. 53
3.1實驗材料…………………………………………………... 53
3.1.1廢水來源……………………………………………. 53
3.1.2試藥及材料…………………………………………. 53
3.2實驗設備…………………………………………………... 56
3.2.1光催化處理系統……………………………………. 56
3.2.2其它儀器設備………………………………………. 58
3.3研究架構………………………………………………….. 60
3.4奈米級TiO2薄膜電極製備………………………………. 64
3.5奈米級TiO2薄膜的分析…………………………………. 66
3.6醋酸廢水的分析………………………………………….. 67

第四章 結果與討論………………………………………………. 69
4.1薄膜式TiO2光觸媒基本特性分析…………...…………... 69
4.1.1 X-光繞射儀(XRD)分析結果……………………. 69
4.1.2場發射型掃描式電子顯微鏡(SEM)分析結果……. 71
4.2醋酸溶液實驗組測試結果………………….……………. 75
4.2.1不同紫外光強度與波長之影響.…………………… 75
4.2.2不同pH值之影響…………………………………... 77
4.2.3不同外加電壓之影響………………………………. 78
4.2.4薄膜式TiO2鍍膜反應面積之影響………………… 79
4.2.5薄膜式TiO2鍍膜其浸鍍及煅燒次數之影響……… 80
4.3實際醋酸廢水實驗組系統測試結果……………………... 82
4.3.1單純醋酸溶液與醋酸廢水差異……………………. 82
4.3.2醋酸廢水實驗測試結果(COD=2000 mg/L)……… 84
4.3.3醋酸廢水實驗測試結果(COD=10000 mg/L)…… 84
4.3.4醋酸廢水實驗測試結果(COD=20000 mg/L)…… 85
4.3.5原始醋酸廢水實驗測試結果………………………. 86
4.4反應動力模式……………………………………………... 88
4.4.1理論反應動力模式推估……………………………. 88
4.4.2不同紫外光波長與光強度操作下之反應動力模式…………………………………………………...
90
4.4.3不同pH值操作下之反應動力模式………………... 92
4.4.4不同外加電壓操作下之反應動力模式……………. 93
4.4.5不同TiO2鍍膜反應面積操作下之反應動力模式…. 95
4.4.6不同TiO2鍍膜浸鍍及煅燒次數操作下之反應動力模式…………………………………………..…….
97
4.4.7不同濃度醋酸廢水操作下之反應動力模式………. 99

第五章 結論與建議………………………………………………. 101
5.1結論………………………………………………………... 101
5.2建議………………………………………………………... 103

參考文獻…………………………………………………………... 104
(1)S. K. Ray, S. B. Sawant, J. B. Joshi, and V. G. Pangarkar, “Dehydration of Acetic Acid by Pervaporation”, Journal of Membrane Science, Vol. 138, pp. 1-17, 1998.
(2)A. E. Yildirim, N. Durmaz-Hilimioglu, A. S. Sakaoglu, and S. Tulbentci, “Acetic Acid Dehydration by Pervaporation”, Chemical Engineering and Processing, Vol. 40, pp. 263-267, 2001.
(3)M. Krajnc and J. Levec, “The Role of Catalyst in Supercritical Water Oxidation of Acetic Acid”, Applied Catalysis B: Environmental, Vol. 13, pp. 93-103, 1997.
(4)M. Watanabe, H. Inomata, R. L. Smith Jr., and K. Arai, “Catalytic Decarboxylation of Acetic Acid with Zirconia Catalyst in Supercritical Water”, Applied Catalysis A: General, Vol. 219, pp. 149-156, 2001.
(5)J. Barbier, F. Delanoë, F. Jabouille, D. Duprez, G. Blanchard, and P. Isnard, “Total Oxidation of Acetic Acid in Aqueous Solutions over Noble Metal Catalysts”, Journal of Catalysis, Vol. 177, pp. 378-385, 1998.
(6)L. X. Yu, Q. F. Guo, J. H. Hao, and W. J. Jiang, “Recovery of Acetic Acid from Dilute Wastewater by Means of Bipolar Membrane Electrodialysis”, Desalination, Vol. 129, pp. 283-288, 2000.
(7)R. J. Bigda, “Consider Fenton’s Chemistry for Wastewater Treatment”, Environmental Science and Technology, Vol. 29, No. 8, pp. 1-17, 1995.
(8)黃耀輝、陳致君、黃國豪、李勝男,「高濃度COD廢水 Fered-Fenton 法自動監測研究」,第二十三屆廢水處理技術研討會論文集,第55-61頁,1998。
(9)R. H. Perry, and C. H. Chilton, Chemical Engineer’s Handbook, 5th ed. McGraw-Hill Book Co., New York, pp. 11, 71, 85, 1981.
(10)H. M. Anasthas, and V. G. Gaikar, “Adsorption of Acetic Acid on Ion- Exchange Resins in Non-Aqueous Conditions”, Reactive & Functional Polymers, Vol. 47, pp. 23-35, 2001.
(11)M. O. Scates, S. E Parker, J. B. Lacy, and R. K. Gibbs, “Recovery of Acetic Acid from Dilute Aqueous Streams Formed during a Carbonylation Process”, Journal Cleaner Production, Vol. 5, No. 3, pp. 966-976, 1997.
(12)B. SaHa, S. P. Chopade, and S. M. Mahajani, “Recovery of Dilute Acetic Acid through Esterification in a Reactive Distillation Column”, Catalysis Today, Vol. 147, pp. 147-157, 2000.
(13)G. Pierre, C. Stéphane, P. Alain, and I. Pascal, “Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts”, Journal of Catalysis , Vol. 168, pp. 104-109, 1997.
(14)R. Wódzki, J. Nowaczyk, and M. Kujawski, “Separation of Propionic and Acetic Acid by Pertraction in a Multimembrane Hybrid System”, Separation and Purification Technology, Vol. 21, pp. 39-54, 2000.
(15)R. G. Zepp, “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environmental Science & Technology, Vol. 22, No. 3, pp. 256-257, 1988.
(16)R. W. Legan, “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January Issue, pp. 95-101, 1982.
(17)L. P. Childs, “Studied in Photoassisted Heterogeneous Catalysis: Rate Equation for 2-Methyl-2-Butyl Alcohol and Isobutane Oxidation and Degradation of Trichloroethylene and Chloroform in Dilute Aqueous Suspensions of Titanium-Dioxide”, Ph.D. Dissertation, Princeton University, 1980.
(18)顧洋,“以紫外線/臭氧程序處理氣相揮發性有機污染物反應行為之研究”,行政院國家科學委員會專題研究計劃成果報告1997。
(19)M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews, Vol. 20, pp. 69-95, 1995.
(20)胡振國 譯,“半導體原件-物理與技術”,全華圖書公司,pp. 2-13,1989。
(21)吳榮宗,“工業觸媒概論”,黎明書局,pp. 72-85,1985。
(22)K. Young, R. M. Leu, and K. C. Lee, “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process”, Journal of the Chinese Institute of Environmental Engineering, Vol. 6, No. 1, pp. 43-49, 1996.
(23)P. L. Huston, and J. J. Pignatello, “Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction”, Environmental Science & Technology, Vol. 30, pp. 3457-3463, 1996.
(24)S. W. Leung, R. J. Watts, and G. C. Miller, “Degradation of Perchloroethylene by Fenton’s Reagent:Speciation and Pathway”, Journal of Environmental Quality, Vol. 21, pp. 377-381, 1992.
(25)W. Stumn, “Chemistry of the Solid-Water Interface”, John Wiley and Sons, New York, 1992.
(26)K. Magrini, S. Larson, R. Rabogo, and C. Turchi, “Control of Gaseous Solvent Emissions Using Photocatalytic Oxidation”, The 89th Air & Waste Management Assoication Annual Meeting, June, 1996.
(27)M. A. Anderson, W. Aeltner, X. Fu, and D. Tompkins, “Chamber Studies Comparing the Effectiveeness of Photocatalytic Degradation and Activated Carbon for the Treatment of Indoor Air”, Air & Waste Management Assoication Annual Meeting, June, 1996.
(28)S. E. Pratsinis, H. Bai, and P. Biswas, “Kinetics of Titanium(IV) Chloride Oxidation”, Journal American Ceramic Society, Vol. 73, pp. 2158-2162, 1990.
(29)M. Nargiello and T. Herz, “Physical-Chemiscal Characteristics of P-25 Making it Exteremely Suited as the Catalyst in Photodegradation of Organic Compounds”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F. and Al-Ekabi, H., Eds., Elsevier, Amsterdam, pp. 801-807, 820, 1993.
(30)吳炳佑,“TiO2光催化膜之製備與性質”,國立中央大學化學工程研究所博士論文,1996。
(31)K. Kato, “Synthesis of TiO2 Photocatalysts with High Activity by the Alkoxide Method”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F. and Al- Ekabi, H., Eds., Elsevier, Amsterdam, pp. 809-820, 1993.
(32)M. A. Anderson, A. Yamazaki-Nishida, and S. Cervera-March, “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F. and Al- Ekabi, H., Eds., Elsevier, Amsterdam, pp. 405-420, 820, 1993.
(33)S. Murasawa and Y. Takaoka, “Several Applications of TiO2 Photocatalyst for Water and Air Purification”, Abstracts of The International Conference on Advanced Oxidation Technologies for Water and Air Remediation, June 10 – 16, Vancouver, 1994.
(34)T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto, and A. Fujishima, “Photocatalytic Activity of TiO2 Thin Film under Room Light”, Abstracts of The International Conference on Advanced Oxidation Technologies for Water and Air Remediation, June 10 – 16, Vancouver, 1994.
(35)M. A. Fox and M. T. Dulay, “Hetergeneous Photocatalysis”, Chemical Reviews, Vol. 93, pp. 341-357, 1993.
(36)A. L. Linsebigier, Guangquan Lu, and J. T. Yates, “Photocatalysis on TiO2 Surface:Principles, Mechanism, and Selected Results”, Chemical Reviews, Vol. 95, pp. 735-758, 1995.
(37)張慶源、蔡文田,“含氯揮發性有機物之活性碳吸附與催化燃燒處理研究”,行政院國家科學委員會專題研究計劃成果報告,1992。
(38)行政院環境保護署,“空氣污染防制法規”,1994。
(39)J. J. Shah and H. B. Singh, “Distribution of Volatile Organic Chemicals in Outdoor and Indoor Air”, Environmental Science and Technology, Vol. 22, pp. 1381-1388, 1988.
(40)S. T. Martin, H. Herrmann, W. Choi, and M. R. Hoffmann, “Time-resolved Microwave Conductivity”, Journal of Chemical Society Faraday Transactions , Vol. 90, No. 21, pp. 3315-3322, 1994.
(41)P. V. Kamat, “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chemical Reviews, Vol. 93, pp. 267-300, 1993.
(42)K. I. Okamoto, Y. Yamamoto, H. Hanaka, and M. Tanaka, “Hetergeneous Photocatalytic Decomposition of Phenol over TiO2 Powder”, Bulletins of the Chemical Society of Japan, Vol. 58, pp. 2015-2022, 1985.
(43)H. M. Liljestand and M. L. Sattler, “Photocatalytic Oxidation Processes for In-Door Air Pollution”, The 89th Air & Waste Management Assoication Annual Meeting, June 19 - 24, Los Angeles, 1996.
(44)李秉傑、邱宏明、王奕凱 譯,“非均勻系催化原理與應用”,渤海堂出版社,pp. 37-130,1992。
(45)C. H. Hung and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, Environmental Science and Technology, Vol. 31, No. 2, pp. 562-568, 1997.
(46)E. K. Kim, M. H. Son, S. K. Min, Y. K. Han, and S. S. Yom, “Growth of Highly Oriented TiO2 Thin Films on InP(100) Substrates by Metalorganic chemical vapor deposition”, Journal Crystal Growth, Vol. 170, pp. 803-807, 1997.
(47)T. J. Richardson and M. D. Rubin, “Liquid Phase Deposition of Electrochromic Thin Films”, Electrochemistry Acta, Vol. 46, pp. 2119-2123, 2001.
(48)S. Yutaka, S. Shigeyuki, and N. Toshikazu, “Indium Tin-Oxide Thin Films Prepared by Dip-Coating of Indiumdiacetate Monohydroxide and Tin Dichloride”, Thin Solid Films, Vol. 388, pp. 22-26, 2001.
(49)T. Yasutaka, O. Shinya, N. Ken, and B. Takayuki, “Dip-Coating of ITO films”, Journal Non-crystal Solids, Vol. 218, pp. 129-134, 1997.
(50)J. Yu, X. Zhao, and Q. Zhao, “Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol–Gel Method”, Materials Chemistry and Physics, Vol. 69, pp. 25-29, 2001.
(51)S. Music, M. Gotic, M. Ivanda, and A. Turkovic, “Chemical and Microstructural Properties of TiO2 Synthesized by Sol-Gel Procedure”, Materials Science and Engineering (B), Vol. 47, pp. 33-40, 1997.
(52)H. Sakai, H. Kawahara, and M. Abe, “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition”, Langmuir, Vol. 14, pp. 2208-2212, 1998.
(53)S. R. Ramanan, “Dip Coated ITO Thin-Films through Sol–Gel Process Using Metal Salts”, Thin Solid Films, Vol. 389, pp. 207-212, 2001.
(54)M. J. Alam and D. C. Cameron, “Optical and Electrical Properties of Transparent Conductive ITO Thin Films Deposited by Sol–Gel Process”, Thin Solid Films, Vol. 377 - 378, pp. 455-459, 2000.
(55)M. Koelsch, S. Cassaignon, J. F. Guillemoles, and J. P. Jolivet, “Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO2 Synthesized by the Sol-Gel Method”, Thin Solid Films, Vol. 403-404, pp. 312-319, 2002.
(56)Q. Wei, H. Zheng, and Y. Huang, “Direct Patterning ITO Transparent Conductive Coatings”, Solar Energy Materials & Solar Cells, Vol. 68, pp. 383-390, 2001.
(57)賴燕昭,“由溶膠-凝膠法製備之鈦酸鉛陶瓷薄膜的結構成長”,國立台灣工業技術學院化學工程研究所碩士論文,1997。
(58)I. Sopyan, M. Watanable, S. Murasawa, K. Hashimoto, and A. Fujishima, “A Film-Type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder:Photocatalytic Activity and Long-term Stability”, Journal of Electroanalytical Chemistry, Vol. 415, pp. 183-186, 1996.
(59)M. Ivanda, S. Music, S. Popovic, and M. Gotic, “XRD, Raman and FT-IR Spectroscopic Observations of Nanosized TiO2 Synthesized by the Sol-Gel Method Based on an Esterification Reaction”, Journal of Molecular Structure, Vol. 480-481, pp. 645-649, 1999.
(60)D. A. Gratson, M. R. Nimos, and E. J. Wolfrum, “Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams”, The 88th Air & Waste Management Assoication Annual Meeting, June 8 - 13, Melbourne, 1995.
(61)L. A. Dibble and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams”, Environmental Science and Technology, Vol. 26, pp. 492-495, 1992.
(62)N. J. Peill and M. R. Hoffmann, “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor”, Environmental Science & Technology, Vol. 30, pp. 2806-2812, 1996.
(63)X. Z. Li, F. B. Li, C. M. Fan, and Y. P. Sun, “Photoelectrocatalytic Degradation of Humic Acid in Aqueous Solution Using a Ti/TiO2 Mesh Photoelectrode”, Water Research, Vol. 36, pp. 2215-2224, 2002.
(64)G. B. Raupp and C. T. Junio, “Photocatalytic Oxidation of Oxygenated Air Toxics”, Applied Surface Science, Vol. 72, pp. 321-327, 1993.
(65)M. W. Peterson, J. A. Turner, and A. J. Nozik, “Mechanistic Studies of the Photocatalytic Behavior of TiO2 Particles in a Photoelectrochemical Slurry Cell and Relevance to Photodetoxification Reactions”, Journal of Physical Chemistry, Vol. 95, pp. 221-223, 1991.
(66)劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
(67)吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
(68)N. J. Peill and M. R. Hoffmann, “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor”, Environmental Science & Technology, Vol. 30, pp. 2806-2812, 1996.
(69)W. F. Jardim, R. M. Aiberic, M. K. Takiyama, and C. P. Huang, “Gas-Phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2”, The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
(70)D. H. Kim and M. A. Anderson, “Photoelectrocatalytic Degradation of Formic Acid Using a Porous TiO2 Thin-Film Electrode’’, Environmental Science and Technology, Vol. 28, pp. 479-483, 1994.
(71)C. C. Sun and T. C. Chou, “Electrochemically Promoted Photocatalytic Oxidation of Nitrite Ion by Using Rutile Form of TiO2/Ti Electrode”, Journal of Molecular Catalysis A: Chemistry, Vol. 151, pp. 133-145, 2000.
(72)顧洋、李玉鈞、陳世偉,“外加電位於紫外線/二氧化鈦程序處理含2-氯酚水溶液之影響”,第二十六屆廢水處理技術研討會論文集光碟,12月14 - 15日,高雄,2001。
(73)K. Vinodgopal and P. V. Kamat, “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Film”, Environmental Science and Technology, Vol. 29, pp. 841-845 (1995).
(74)B. Kraeutler and A. Bard, “Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates”, Journal of American Chemical Society, Vol. 100, pp. 5985-5998, 1978.
(75)J. N. Wilson and H. Idriss, “Effect of Surface Reconstruction of TiO2 Single Crystal on the Photoreaction of Acetic Acid”, Journal of Catalysis, Vol. 214, pp. 46-52, 2003.
(76)H. Yoneyama, Y. Takao, H. Tamura, and A. Bard, “Factors Influencing Product Distribution in Photocatalytic Decomposition of Aqueous Acetic Acid on Platinized TiO2”, Journal of Physical Chemistry, Vol. 87, pp. 1471-1422, 1983.
(77)A. Chemseddine and H. P. Boehm, “A Study of the Primary Step in the Photochemical Degradation of Acetic Acid and Chloroacetic Acids on a TiO2 Photocatalyst”, Journal of Molecular Catalysis, Vol. 60, pp. 295-311, 1990.
(78)D. S. Muggli and J. L. Falconer, “Parallel Pathways for Photocatalytic Decomposition of Acetic Acid on TiO2”, Journal of Catalysis, Vol. 187, pp. 230-237, 1999.
(79)Y. Nosaka, K. Koenuma, K. Ushida, and A. Kira, “Reaction Mechanism of the Decomposition of Acetic Acid on Illuminated TiO2 Powder Studied by Means of in Situ Electron Spin Resonance Measurements”, Langmuir, Vol. 12, pp. 736-738, 1996.
(80)A. Sclafani, L. Palmisano, M. Schiavello, and V. Augugliaro, “The Photodecomposition of Ethanoic Acid Adsorbed over Semiconductor and Insulator Oxides”, New Journal of Chemistry, Vol. 12, pp. 129-135, 1988.
(81)J. Barbier Jr., F. Delanoe, F. Jabouille, D. Duprez, G. Blanchard, and P. Isnard, “Total Oxidation of Acetic Acid in Aqueous Solutions over Noble Metal Catalysts”, Journal of Catalysis, Vol. 177, pp. 378-385, 1998.
(82)M. Watanabe, H. Inomata, R. L. Smith, and K. Arai, “Catalytic Decarboxylation of Acetic Acid with Zirconia Catalyst in Supercritical Water”, Applied Catalysis(A), Vol. 219, pp. 149-156, 2001.
(83)M. Krajnc and J. Levec, “The Role of Catalyst in Supercritical Water Oxidation of Acetic Acid”, Applied Catalysis(B), Vol. 13, pp. 93-103, 1997.
(84)E. R. Carraway, A. J. Hoffman, and M. R. Hoffman, “Photocatalytic Oxidation of Organic Acid on Quantum-Sized Semiconductor Colloids”, Environmental Science and Technology, Vol. 28, pp. 786-793, 1994.
(85)S. O. Pehkonen, R. L. Siefert, and M. R. Hoffman, “ Photoreduction of Iron Oxyhydroxides and the Photooxidation of Halogenated Acetic Acids”, Environmental Science and Technology, Vol. 29, pp. 1215-1222, 1995.
(86)S. Sato, K. Ueda, Y. Kawasaki, and R. Nakamura, “In Situ IR Observation of Surface Species during the Photocatalytic Decomposition of Acetic Acids over TiO2 Films”, Journal of Physical Chemistry, Vol. 106, pp. 9054-9058, 2002.
(87)J. M. White, J. Szanyi, and M. A. Henderson, “Thermal Chemistry of Trimethyl Acetic Acid on TiO2”, Journal of Physical Chemistry, Vol. 108, pp. 3592-3602, 2004.
(88)林彥志,“TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究”,國立台灣大學化學工程研究所碩士論文,2000。
(89)“水中化學需氧量檢測方法─密閉迴流滴定法”,環署檢字第21288號公告, NIEA W517.50B,1999。
(90)張博銘,“以光電氧化法處理水中高濃度醋酸之研究”,國立台灣大學環境工程研究所碩士論文,2002。
(91)邱奕霖,“以CVD法製備TiO2光觸媒去除水溶液中雙氯酚之研究”, 國立中興大學環境工程研究所碩士論文,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蔡瑟珍、劉國讚(民93:42-58),〈歐洲專利局上訴程序簡介兼論與我國制度之比較〉,《智慧財產權月刊》,第70期。
2. 劉國讚(民93:5-23),〈有關專利實體審查之行政訴訟判決之研究〉,《智慧財產權月刊》第69期。
3. 劉國讚(民93:32-39),〈在專利爭議事件審查上運用聽證程序之探討〉,《智慧財產權月刊》,第64期。
4. 鄭雅寧(民93:19-32),〈智慧財產專業人才培訓〉,《智慧財產權月刊》,第72期。
5. 馮震宇(民93:5-21),〈專利商品化模式之探討〉,《智慧財產權月刊》,第65期。
6. 馮浩庭(民93:5-18),〈各國智慧財產權審查人員培訓之簡介〉,《智慧財產權月刊》,第72期。
7. 黃文儀(民93:5-14),〈新型形式審查概述〉,《智慧財產權月刊》,第63期。
8. 陳達仁(民93:5-11),〈專利檢索〉,《智慧財產權月刊》,第70期。
9. 許士軍(民87:74-83),〈走向不需要管理的管理〉,《世界經理文摘》,第139期。
10. 許耀華(民93:5-21),〈專利分類系統及其運用〉,《智慧財產權月刊》,第68期。
11. 孫寶成(民93:69-74),〈美國專利再審查程序及其沿革〉,《智慧財產權月刊》,第73期。
12. 洪瑞章(民93:24-41),〈美國專利行政救濟制度與實務簡介〉,《智慧財產權月刊》,第69期。
13. 周仕筠(民93:15-27),〈新型專利形式審查〉,《智慧財產權月刊》,第63期。
14. 林國塘(民88:49-65),〈日本專利制度與我國專利制度之比較〉,《智慧財產權月刊》,第9期。
15. 吳文賓(民92:49-63),〈淺論專利審查基準的法律性質及司法審查〉,《智慧財產權月刊》,第49期。