跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭人豪
研究生(外文):Jen-hao Cheng
論文名稱:利用奈米級TiO2薄膜光催化處理氯苯水溶液之研究
論文名稱(外文):A Study on Photocatalytic Oxidation of Aqueous Chlorobenzene Solutionby Nanostructured Film of TiO2
指導教授:楊金鐘楊金鐘引用關係
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:二氧化鈦氯苯外加電壓反應動力薄膜式光觸媒
外文關鍵詞:Thin film photocatalystKineticsApplied electric voltageTiO2Chlorobenzene
相關次數:
  • 被引用被引用:8
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用薄膜式奈米級TiO2光觸媒材料,針對氯苯水溶液進行異相光催化反應並探討其處理效率。傳統上,光觸媒材料的使用大多以粉末型態為主,即所謂的懸浮式處理系統。雖然粉末材料之高比表面積特性對於異相光催化反應具有良好的優勢條件,但其反應後之水質仍有懸浮固體物的問題等待解決,況且懸浮式的光觸媒材料亦會對紫外光造成遮光效應,影響光催化降解污染物的效率。為了克服此問題,本研究乃選擇一適當網目之不鏽鋼網做為基材,應用溶膠-凝膠法製備TiO2光觸媒,並以浸鍍方式將其均勻附著於基材表面,再經500℃高溫煅燒製成薄膜式TiO2光觸媒材料。製成之TiO2薄膜經X-光繞射(XRD)及掃描式電子顯微鏡(SEM)鑑定,證實其晶型為銳鈦礦,粒徑為10 ~ 20 nm;TiO2薄膜之光催化能力則選擇氯苯水溶液作為研究對象,進行薄膜式光催化反應試驗。試驗中探討TiO2鍍膜厚度、反應初始pH值、紫外光(波長365 nm)強度及外加電壓等不同變因,對薄膜式光催化反應降解水中污染物的可行性及其效率。研究結果顯示,薄膜式光催化反應可分解氯苯水溶液,唯其降解效率之提高有待進一步研究與探討。然而氯苯之降解率隨TiO2鍍膜厚度之增加而有增加之趨勢,其中,以浸鍍及煅燒四次膜厚(673 nm)之降解率最佳。另外,氯苯之降解率,隨紫外光強度之增加而增加。反應液pH值之影響方面,由於氯苯為非解離型化合物,pH值之改變不會影響氯苯在觸媒表面之吸附性質,對其光催化反應之影響並不顯著。另在本反應系統中發現,外加電壓不能有效阻止電子與電洞發生再結合反應,對光催化反應反而造成抑制作用。最後,本研究以擬一階反應動力模式推估結果得知,光催化反應速率常數k '' =1.3×10-5(min-1),並且其反應速率與紫外光光強度的0.7507次方成正比。
In This study a thin film of nanometric TiO2 was sol-gel prepared and used for heterogeneous photocatalytic reaction to treat chlorobenzene in testing solution and to evaluate its removal efficiency. Conventionally, the material of photocatalyst was mainly fabricated in form of powder used in the suspension system. Although TiO2 powder has a high specific surface area for heterogeneous photocatalysis, it still leaves a great number of suspended solids in solution awaiting proper handling after the treatment is completed. Also, such suspended solids would pose “shielding” effect from UV light, and thus affected the efficiency of photocatalytic degradation. To overcome this drawback, a proper mesh size of stainless steel webnet was first selected as a treatment substrate and TiO2 dip-coated, followed by calcination at 500℃. The end product was used as the TiO2 photocatalytic film for this study. The film of TiO2, verified as anatase type of crystal lattice by XRD and SEM, contained particle sizes ranging from 10 to 20 nm. A solution containing chlorobenzene was used in the study to assess the extent of photocatalytic degradation by UV/TiO2 film. The test was to evaluate the effects of the number of dip-coating and calcining (thickness), initial pH, UV light intensity (@365 nm), and applied electric voltage on photocatalytic removal of chlorobenzene in the solution. The test results indicated that TiO2 film was capable of degrading chlorobenzene; however, enhancement of the degradation efficiency was found to be needed. It was also found that the degradation rate of chlorobezene increased with an increasing thickness of the film and UV light intensity. The pH of test solution was found to be insensitive to degradation of chlorobenzene, probably due to its non-dissociation nature. It was found that electric voltage exerted was unable to prevent electrons and holes from re-combining, and a negative effect of external voltage was even observed. Therefore, it was believed that voltage exertion was not beneficial to phtocatalysis in this study. Kinetics of the tests in this study assumed a pseudo-first-order reaction, which resulted in a rate constant k'' = 1.3×10-5(min-1). The reaction rate was found to be proportional to the 0.7507 order of UV light intensity.
目錄誌謝……………………………………………………….……………..……..i 摘要……………………………….…………………….……………....……. .iiAbstract………………………………………………………….………........ iii目錄……………………………………………………………..……….....…iv 圖目錄……………………………………………………………………….. .x 表目錄………………………………………………………………..……….xii第一章緒論…………………………………………… ……………..……...1 1-1 前言……………………………………………………………..………...1 1-2 研究動機………………………………………………………….……...2 1-3 研究內容………………………………...……………………….………4 1-4 研究架構…………………………………………………………….…...5 第二章理論基礎與文獻回顧…………………………….…………….…...6 2-1 光催化作用原理…………………………………………….…………...6 2-1-1 光的性質………………………………………………….……8 2-1-2 光化學反應…………………………………………….……...9 2-1-3 光觸煤材料……………………………………………..…….11
iv
2-2 紫外光/二氧化鈦處理程序……………………………………..……...12 2-2-1二氧化鈦物理性質…………………………………..………12 2-2-2二氧化鈦半導體的特性……….…………………..………..15 2-2-3二氧化鈦之光催化原理………………………….……….…19 2-2-4二氧化鈦照光分解有機物之機制………………………….20 2-3 TiO2光催化反應之影響因子…………………………………..…….…25 2-3-1二氧化鈦物化性質……………………………………..….….252-3-2二氧化鈦劑量………………………………………..….…….252-3-3紫外光波長與光強度………………………..…..….…….….26 2-3-4初始濃度……………………………………..………….…….27 2-3-5 pH值………………………………………….…………...…..28 2-3-6溶氧………………………………………………….…….…..28 2-3-7陰離子種類……………………………………….……….….29 2-3-8 H2O2添加……………………………………………………..29
v
2-3-9温度………………………..…………………………………..30 2-4 二氧化鈦之製備………………………………….……………..….30 2-4-1溶膠-凝膠法…………………………………………..……..30 2-4-2化學蒸氣沈積法…………………………………….………34 2-4-3液相沈積法…………………………………..…………..….34 2-5 氯苯概述……………………………………………..………………....35 2-5-1氯苯之基本性質…………………………………..………..…....35 2-5-2用途及來源……………………………………………………....36 2-5-3氯苯的污染情形……………………………...………..………...37 2-5-4氯苯對人體的危害與管制………….………………………..….37 2-5-5含氯苯廢水之處理技術…………………..……………..………40 第三章實驗材料與方法…………………………….………………...…....43 3-1 實驗材料………………………………………………………………..43 3-1-1藥品與試劑…………………………………………………..……43 3-1-2反應系統………………………………………………………..…43 3-1-3薄膜製備設備……………………………………..………………46 3-1-4分析儀器………………………………………………..…...…….46
vi
3-1-5其他設備………………………………………………..…………47 3-2 實驗程序…………………………………………………………...…...47 3-2-1薄膜式TiO2/不鏽鋼網光觸媒製備.…...….……………..…….47 3-2-2不鏽鋼網基材之網目選擇…………………..………………..…..50 3-2-3薄膜式TiO2/不鏽鋼網光觸媒基本性質分析…………………..50 (a)TiO2薄膜晶型鑑定-XRD……………………………..………50 (b)TiO2薄膜表面型態及粒徑分析-SEM………………..………51 (c)薄膜厚度分析-重量法……………………………………...…51 3-2-4氯苯濃度分析方法………………………………………………..52 3-2-5薄膜式光催化氯苯之背景試驗………………………….……….53 (a)直接光解試驗………………………………………….…..….53 (b)反應升溫之揮發試驗……………………………………...….53 (c)外加電壓之電解試驗…………………………………...…….54 3-2-6不同變因操作下對薄膜式光催化反應之影響….………..….…54 (a)鍍膜次數效應……………………………………..……….….54 (b)初始pH值效應…………………..………….………...……..55 (c)UV光強度效應……….………….…………..…...…...… …..55
vii
(d)外加電壓效應……………..……………………..…….……..56 第四章結果與討論………………………………………………..……….58 4-1 薄膜式TiO2/不鏽鋼網光觸媒…………………..………………...…58 4-1-1不鏽鋼網基材之網目篩選….…………..………………....…58 4-1-2薄膜式TiO2/不鏽鋼網光觸媒基本性質分析………….…..61 (a)TiO2薄膜晶型鑑定-XRD……….………….…..………...…..61 (b)TiO2薄膜表面型態及粒徑分析-SEM…………….…….…...63 (c)薄膜厚度分析-重量法………………………………….…….67 4-2 薄膜式光催化反應………………………………………………….….70 4-2-1氯苯濃度分析……………………………………………….…...70 4-2-2薄膜式光催化氯苯之背景試驗……………………………..…..72 4-2-3不同操作變因下對薄膜式光催化反應之影響…………….…..73 (a)鍍膜次數效應…………………………………...…………..73 (b)pH值效應………………………………………………..….76 (c)UV光強度效應………………………………………..…….79 (d)外加電壓效應…………………………………….…………83 4-3 反應動力學探討…………………………………………………..……86
viii
4-4 薄膜式與懸浮式光催化效率比較………………………..…….….914-4-1一般性光催化效率比較………………….………….……...93 4-4-2單位觸媒表面積之處理效率比較……………………….……...93 4-4-3綜合比較…………………………………………………...…….96 第五章結論與建議………………………………………………….….…..97 5-1 結論…………………………………………………………..…..….…..97 5-2 建議………………………………………………………..………….…98 參考文獻………………………………………………………..….……….100
ix
圖目錄
圖1-1薄膜式光催化氯苯水溶液研究架構………………..………...…….5 圖2-1光催化反應之能階變化示意圖……………………………......8 圖2-2二氧化鈦金紅石之晶型結構圖……………………………………14 圖2-3二氧化鈦銳鈦礦之晶型結構圖………………………..………..…14 圖2-4二氧化鈦的能量圖與其他氧化劑的氧化電位…………..…..……15 圖2-5代表性半導體能隙圖………………….…………………..….……17 圖2-6紫外光/二氧化鈦反應機制圖…………….…………..….……22 圖3-1光催化反應系統之構造圖……………………………..……..……45 圖3-2薄膜式TiO2/不鏽鋼網光觸媒製備流程圖…………..…….….…..49 圖4-1 TiO2/不鏽鋼網光觸媒鍍膜之質量變化圖………….…......….60 圖4-2 TiO2/不鏽鋼網鍍膜之X光繞射分析與比對結果……..….…62 圖4-3薄膜式TiO2/不鏽鋼網光觸媒斷面之SEM觀察結果…….…64 圖4-4薄膜式TiO2/不鏽鋼網光觸媒表面之SEM觀察結果…….....65圖4-5薄膜式TiO2/不鏽鋼網光觸媒之SEM粒徑觀察結果……….66 圖4-6依反應器所設計之不鏽鋼網基材尺寸………………………..68圖4-7氯苯水溶液之紫外光(200~400 nm)掃瞄圖…….………….71圖4-8氯苯濃度檢量線圖………………………………….……….….71
x
圖4-9背景試驗中氯苯之降解率變化圖………..…………………...73 圖4-10不同TiO2鍍膜次數之氯苯光催化反應分解情形….……....75 圖4-11光催化反應中不同TiO2鍍膜次數之氯苯降解率…………..76圖4-12不同初始pH值對氯苯光催化反應之分解情形….……......78 圖4-13不同初始pH值於光催化反應之氯苯降解率….….………..78 圖4-14 TiO2粉末於水溶液中之界達電位量測結果….…….…….…79圖4-15單支紫外光燈管光強度隨時間的衰減情形..…….…………81 圖4-16紫外光光強度與紫外光光燈管數關係圖……….…….….…82 圖4-17不同紫外光光強度操作對氯苯光催化反應之分解情形…..82 圖4-18不同紫外光光強度操作對光催化氯苯之降解率變化圖…..83 圖4-19不同外加電壓操作對光催化氯苯之濃度變化…………...…85 圖4-20不同外加電壓操作對光催化氯苯之降解率…………………85圖4-21不同紫外光光強度操作對氯苯光催化反應之ln(-ln(
C/ C0)與ln(I)作圖………………………………….…...…90
xi
表目錄
表1-1光觸媒的應用範疇…………………………………..…….……3 表2-1金紅石型與銳鈦礦型TiO2之比較…………………….….…….…13 表2-2常見半導體激發所需之臨界波長………………………..…….…18 表2-3不同化學物質之氧化電位…………………………….……....24 表2-4光催化反應研究中之TiO2最佳使用劑量…………………...26 表2-5氯苯之物理化學性質與危害……………………….……..…..36表2-6氯苯對於人體之健康危害效應…………..………..……..…...39表2-7氯苯對於人體之健康危害資料…………………………….….40表3-1不同變因對薄膜式光催化氯苯試驗操作條件表…….…..….57表4-1不鏽鋼網規格及試驗條件………………………….……..…..59 表4-2 TiO2薄膜厚度分析結果………………………….………....…68表4-3薄膜式TiO2/不鏽鋼網光觸媒基本性質分析結果..……........69表4-4背景試驗之反應條件…………………………………………..72表4-5不同外加電壓操作之光催化試驗條件…………………...….84 表4-6薄膜式與懸浮式TiO2光催化氯苯反應之比較………….….92 表4-7以單位觸媒表面積比較薄膜式與懸浮式之光催化效率…...95 表4-8薄膜式與懸浮式光反應器優缺點綜合比較.……………….…96
xii
參考文獻
1. 呂信德,“磁控濺鍍TiO2-WO3複合膜光催化性質之研究”,碩士論文,國立成功大學資源工程學系,台南市(2003)。
2. 華彤文、楊駿英、陳景祖、劉淑貞,普通化學原理,五南圖書,台北市(2002)。
3. 林彥志,“TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究”,碩士論文,國立台灣大學化學工程學研究所,台北市(2000)。
4. Serpone, N. and E. Pelizzetti, Photocatalysis Fundamentals and Applications, John Wiley & Sons, New York, New York, Chappter 1(1989).
5. 廖偉登,“以光催化脫色染料人工廢水之研究”,碩士論文,國立中山大學環境工程研究所,高雄市(1997)。
6. Zhao, J. and X. Yang,“Photocatalytic Oxidation for Indoor Air Purification: A Literature Review ,”Building and Environment, 38, pp. 645-654(2003).
7. Uchida, H., S. Katoh, and M. Watanabe,“Photocatalytic Degradation of Trichlorobenzene Using Immobilized TiO2 Flims Containing Poly(tetrafluoroethylene) and Platinum Metal Catalyst,” Electrochimica Acta, 43(14), pp. 2111-2116(1998).
8. Ollis, D. F.,“Heterogeneous Photocatalysis Degrades Halogenated Hydrocarbon Contaminants,”Environmental Science & Technology, 19(6), pp. 480-484(1985).
9. Yin, H., Y. Wada, T. Kitamura, and S. Yanagida,“Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts,”Environmental Science & Technology,
100
35(7), pp. 227-231(2001).
10. 陳至信,“TiO2薄膜性質調變與製程控制”,碩士論文,國立清華大學電機工程研究所,新竹市(1996)。
11. 洪肇佑,“應用氣舉式反應器進行甲苯光觸媒催化反應之研究”,碩士論文,國立清華大學化學工程學系,新竹市(2000)。
12. 呂宗昕,圖解奈米科技與光觸媒,商周出版,台北市(2003)。
13. 王偉霖,“以熱水解法製備二氧化鈦粉末及鍍膜之研究”,碩士學位論文,國立台灣大學材料科學與工程學研究所,台北市(2001)。
14. 周美雲,“二氧化鈦的電子特性和光學特性之探討”,碩士論文,國立清華大學物理學系,新竹市(2003)。
15. 林正豐,“奈米二氧化鈦之製備及活性測定”,碩士學位論文,國立台灣大學化學工程學研究所,台北市(2001)。
16. Zhang, P. and R. J. Scrudato,“Photocatalytic Processes to Remediate Contaminated Water and Sediments,”Source Unknown.
17. 鄭世崧,“陽極氧化二氧化鈦電極之光電化學特性”,碩士學位論文,國立台灣大學工程技術研究所,台北市(1991)。
18. Wang, K. H., H. H. Tasi, and Y. H. Hsieh,“A Study of Photocatalytic Degradation of Trichloroethylene in Vapor Phase on TiO2 Photocatalyst,”Chemosphere, 36(13), pp. 2763-2773(1998).
19. Hoffmann, M. R., S. T. Martin, W. Choi, and D. W. Bahnemann,“Environmental Applications of Semiconductor Photocatalysis,” Chemical Review, 95(1), pp. 69-96(1995).
20. 高子期,“含錳二氧化鈦分解水中農藥污染物的研究”,碩士論文,
101
國立臺灣大學化學研究所,台北市(2002)。
21. Anpo, M. and M. Takeuchi,“The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,”Journal of Catalysis, 216, pp. 505-516(2003).
22. Lindner, M., J. Theuric, and D. W. Bahnemann,“Photocatalytic Degradation of Organic Compounds: Accelerating the Process Efficiency,”Water Science and Technology, 35(4), pp. 79-86(1997).
23. Moctezuma, E., E. Leyva, E. Monreal, N. Villegas, and D. Infante,“Photocatalytic Degradation of the Herbicide Paraquat,”Chemosphere, 39(3), pp. 511-517(1999).
24. Davydov, L., Ettireddy P. Reddy, P. France, and P. G. Smirniotis,“Transition-Metal-Substituted Titania-Loaded MCM-41 as Photocatalysts for the Degradation of Aqueous Organics in Visible Light,”Journal of Catalysis, 203, pp. 157-167(2001).
25. 魏國修,“利用TiO2薄膜光電催化亞甲基藍去色之反應動力學探討”,碩士論文,國立台灣大學化學工程學系,台北市(1997)。
26. 黃欣栩、莊連春、曾迪華“觸媒表面特性對UV/TiO2程序降解單氯苯之影響”, 第二十六屆廢水研討會論文集光碟,12月14-15日,高雄市(2001)。
27. Matthews, R. W.,“Photocatalytic Oxidation of Chlorobenzene in Aqueous Suspension of Titanium Dioxide,”Journal of Catalysis, 97, pp. 565-568(1986).
28. 李玉均,“外加電位及披覆鉑對UV/TiO2程序處理含2-氯酚水溶液之影響”,碩士論文,國立台灣科技大學化學工程學系,台北市(2001)。
102
29. Grzechulska, J., M. Hamerski, and A. W. Morawski,“Photocatalytic Decomposition of Oil in Water,”Water Research, 34(5), pp. 1638-1644(2000).
30. 林萬福,“TiO2催化劑對3-氯苯酚進行光催化氧化反應之反應裝置改良與動力學研究”,碩士學位論文,國立高雄師範大學化學研究所,高雄市(1998)。
31. 歐信弘,“光觸媒間電子傳遞效應催化降解4-CP及4-NP”,碩士論文,國立台灣大學環境工程學研究所,台北市(2003)。
32. 歐信弘、吳忠信、駱尚廉,“應用光觸媒內電子傳遞效應探討催化降解4-CP及4-NP”,第二十八屆廢水研討會論文集光碟,11月28-29日,台中市(2003)。
33. Kim, S. B. and S. C. Hong,“Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Applied Catalysis B:Environmental, 35, pp. 305-315(2002).
34. Hager, S. and R. Bauer,“Heterogeneous Photocatalytuc Oxidation of Organics for Air Purification by Near UV Irradiated Titanium Dioxide,” Chemosphere, 38(7), pp. 1549-1559(1999).
35. D’Oliver, J. C., A. S. Ghassan, and P. Pierre,“Photodegradation of 2- and 3-Chlorophenol in TiO2 Aqueous Suspension,”Environmental Science & Technology, 24(7), pp. 990-996(1990).
36. Matthews, R. W.,“Photooxidative Degration of Colloured Organics in Water Using Supported Catalysis TiO2 on Sand,”Water Research, 25(10), pp. 1169-1176(1991).
37. Davis, R. J., Gainer, J. L., G.. O,Neal, and I-Wen Wu,“Photocatalytic
103
Decolorization of Wastewater Dyes,”Water Environment Research, 66(1), pp. 50-53(1994).
38. 呂明仁,“以紫外光二氧化鈦程序處理2-氯酚溶液反應行為之研究”,碩士論文,國立台灣工業技術學院化學工程學系,台北市(1993)。
39. Tang, W. Z. and H. An,“UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,”Chemosphere, 31(9), pp. 4150-4170(1995).
40. Augualiaro, V., L. Palmisano, and A. Sclafani,“Photocatalytic Degradation of Phenol In Aqueous Titanium Dioxide Dispersion,” Toxicological and Environmental Chemistry, 16(1), pp. 89-109(1988).
41. Abdullah, M., G. K. C. Low, and R. W. Matthews,“Effect of Common Inorganic Anions on Rates of Photocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide,”Journal of Physical Chemistry, 94, pp. 6820-6825(1990).
42. 黃欣栩、曾迪華、莊連春、林何印,“溶氧及過氧化氫對UV/ TiO2系統光解效能之影響”,第二十八屆廢水處理技術研討會論文集光碟,11月28-29日,台中市(2003)。
43. Hofstandler, K. and R. Bauer,“New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol,” Environmental Science & Technology, 28(4), pp. 671-674(1994).
44. Anheden, M., D. Y. Goswami, and G. Svedberg,“Photocatalytic Treatment of Wastewater from S-Fluorouracil Manufacturing,”Journal of Solar Energy Engineering, 118(1), pp. 2-8(1996).
45. 盧明俊、阮國棟、陳重男,“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集,pp. 807-819,12月14-15
104
日,高雄市(1991)。
46. Yoldas, B. E., “Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters,” Journal of Materials Science, 21, pp. 1087-1092(1986).
47. Yu J., X. Zhao, and Q. Zhao, “Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol-Gel Method,” Materials Chemistry and Physics, 69, pp. 25-29(2001).
48. Cot, F., A. Larbot, G. Nabias, and L. Cot, “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder,” Journal of European Ceramic Society, 18, pp. 2175-2181(1998).
49. Music, S., M. Gotic, M. Ivanda, A. Turkovic, R. Trojko, A. Sekulic, and K. Furic, “Chemical and Microstructural Properties of TiO2 Synthesized by Sol-Gel Procedure,” Materials Science and Engineering: B, 47, pp. 33-40(1997).
50. Sakai, H., H. Kawahara, M. Shimazaki, and M. Abe, “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition,” Langmuir, 14, pp. 2208-2212(1998).
51. Ivanda, M., S. Music, S. Popovic, and M. Gotic,“ XRD, Raman and FT-IR Spectroscopic Observations of Nanosized TiO2 Synthesized by the Sol-Gel Method Based on an Esterification Reaction,”Journal of Molecular Structure, 480-481, pp. 645-649(1999).
52. 張名毅、謝永旭、王國華處理技術“以UV/ TiO2程序處理染整廢水可行性之研究”,第二十四屆廢水處理技術研討會論文集光碟,11月26-27日,中壢市(1999)。
105
53. Kim, E. K., M. H. Son, Suk-Ki Min, Y. K. Han, and S. S. Yom,“Growth of Highly Oriented TiO2 Thin Films on InP(100) Substrates by Metalorganic Chemical Vapor Deposition,”Journal of Crystal Growth, 170, pp. 803-807(1997).
54. Kishimoto, H., K. Takahama, N.Hashimoto, Y. Aoi, and S. Deki,“Photocatalytic Activity of Titanium Oxide Prepared by Liquid Phase Deposition (LPD),”Journal of Materials Chemistry, 8, pp. 2019-2024(1998).
55. Richardson, T. J. and M. D. Rubin,“Liquid Phase Deposition of Electrochromic Thin Films,”Electrochim Acta, 46, pp. 2119-2123(2001).
56. 行政院勞工安全委員會,物質安全資料表(MSDS)。
57. 黃順興,“電聚浮除法處理含氯苯之探討”,碩士論文,淡江大學水資源及環境工程學系,台北市(2000)。
58. Oliver, B. G. and K. D. Nicol,“Chlorobenzenes in Sediments, Water and Selected Fish from Lakes Superior, Huron, Erie, and Ontario,”Environmental Science & Technology, 16(8), pp. 532-536(1982).
59. Pereira, W. E., C. E. Rostad, C. T. Chiou, T. I. Brinton and L. B. Barber,“Contamination of Estuarine Water, Biota, and Sediments by Halogenated Organic Compounds: A Field Study,”Environmental Science & Technology, 22(7), pp. 772-778(1988).
60. Masunaga, S., Y. Yonezawa, and Y. Urushigawa,“The Distribution of Chlorobenzene in the Botton Sediments of Ise Bay, Water Research, 25(3), pp. 275-288(1991).
61. Lee, C. L. and M. D. Fang,“Sources and Distribution of Chlorobenzenes and Hexachlorobutadiene in Surficial Sediments Along the Coast of Southwestern Taiwan,”Chemospher, 35(9), pp. 2039-2050(1997).
62. 方孟德,“台灣西南海域沉積物中重金屬及氯苯類化合物含量分佈之研
106
究”,碩士論文,國立中山大學海洋環境研究所,高雄市(1996)。
63. 行政院環保署,「地下水污染管制標準」(2001)。
64. Sweeny, K. H.,“Reductive Treatment of Industrial Wastewaters-2. Process Appliccations,”AIChE Symposium Series No. 209, pp. 72-78(1981).
65. Matthews, R. W.,“Photo-oxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide,”Water Research, 20(5), pp. 569-578(1986).
66. Bouwer, E. J.,“Biotransformation of Aromatics in Strip-Pit Pond,”Journal of Enviromental Engineering, 115(4), pp. 741-755(1989).
67. Sundstrom, D. W., B. A. Weir, and H. E. Klei,“Destruction of Aromatic Pollutants by UV Light Catalyzed Oxidation with Hydrogen Peroxide,”Enviromental Progress, 8(1), pp. 6-11(1989).
68. Ali, S. A., J. R. Bolton, and S. R. Cater,“Ferrioxalate-Mediated Photodegradation of Organic Pollutants in Contaminated Water,”Water Research, 31(4), pp. 787-798(1997).
69. 張碧芬,“氯苯化合物在水體環境中厭氧生物分解之研究”,行政院國科會專題研究計畫成果報告,計畫編號:NSC84-2211-E031-001(1995)。
70. 張財福,“含氧化鈦觸媒的製備、性質鑑定及其對分解含氯苯環污染物質之光催化性質探討”,碩士論文,國立台灣大學化學系研究所,台北市(1997)。
71. Anderson, M. A. and Q. Xu,“Titania and Alumina Ceramic Membranes,”Journal of Membrane Science, 39, pp. 243(1988).
72. Gerfin, T., M. Gratzel, and L. Walder,“Molecular and Supramolecular Surface Modification of Nanocryatalline TiO2 Films:Charge-Separating and Charge-Injection Devices,”Progress in Inorganic Chemistry, 44, Series Edited by K. D. Karlin: Molecular Level Articial Photosynthetic Materials,
107
Sepecial Volume Edited by G. J. Meyer, pp. 345-393, John Wiley & Sons, Inc., New York, New York, 1997.
73. 莊連春、曾迪華,“光分解1-氯苯反應行為之研究”,中國環境工程學刊, 第7卷,第2期,第119-132頁(1997)。
74. 祝德杭,“UV/H2O2系統分解水中氯苯類污染物與減毒效果之研究”,碩士論文,國立中央大學環境工程研究所,中壢市(2002)。
75. 陳俊祥“TiO2觸媒製備對氣相苯及甲苯光催化分解之影響”,碩士論文,國立台灣科技大學化學工程系,台北市(2000)。
76. Shang, J., W. Li, and Y. Zhu,“Structure and Photocatalytic Characteristics of TiO2 Film Photocatalyst Coated on Stainless Steel Webnet,”Journal of Molecular Catalysis A: Chemical, 202, pp. 187-195(2003).
77. Zhu, Y., L. Zhang, L. Wang, Y. Fu, and L. Cao,“The Preparation and Chemical Structure of TiO2 film Photocatalysts Supported on Stainless Steel Substrates via the Sol-Gel Method,”Journal of Materials Chemistry, 11(7), pp. 1864-1868(2001).
78. 趙慶光,“氯苯及氯酚在土壤與水之間的平衡分佈:熱力學及分子拓樸學的探討”,博士論文,國立台灣大學農業化學研究所,台北市(1992)。
79. 莊智琄,“利用同步電混凝/電過濾程序處理含奈米級TiO2之有機廢水”,碩士論文,國立中山大學環境工程研究所,高雄市(2004)。
80. Chen, J., D. F. Ollis, W. H. Rulkens and H. Bruning,“Kinetic Processes of Photocatlytic Mineralization of Alcohols on Metallized Titanium Dioxide,” Water Research, 33(5), pp. 1173-1180(1999).
81. 李婉惠,“以UV/TiO2程序光還原液相及氣相二氧化碳反應行為之研究”,碩士論文,國立台灣科技大學化學工程系,台北市(1998)。
82. 謝秉勳,“奈米級光觸媒之製備及光催化活性測定”,碩士論文,國立台灣大學環境工程研究所,台北市(2001)。
108
83. 吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,碩士論文,國立中山大學環境工程研究所,高雄市(1996)。
109
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top