跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳龍泉
研究生(外文):Long-chem Wu
論文名稱:受石油碳氫化合物污染場址評估與處理技術可行性研究
論文名稱(外文):Site Assessment and Remediation Feasibility Study of a Petroleum Hydrocarbons Contaminated Site
指導教授:楊金鐘楊金鐘引用關係
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:272
中文關鍵詞:整治組合式現地處理技術石油碳氫化合物健康風險評估固相微萃取
外文關鍵詞:petroleum-hydrocarbonshealth risk-based assessmentsolid phase micro-extractionsite assessmenttreatment trainremediation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對南部某石化廠之污染場址 (污染物種以烷基苯為主,包括苯、甲苯、乙苯、三甲基苯及萘) 利用詳盡之場址評估程序以決定最佳化污染整治作業。場址評估時使用直接貫入法以不擾動方式進行土壤採樣,並將自行研發的固相微萃取技術及各種檢測設備運用於污染物物種檢測。現地共設置20口監測井、6口氣體監測點、3座多深度監測井、氣體注入井與土壤氣體抽除井一組。首先利用氦氣示蹤實驗、微水實驗、汲油實驗、及實驗室與小範圍規模施作測試,解析現地地質、水文、評估增加生物活性及自由相回收之可行性。場址評估結果及參數用於實際場址整治工法選擇與設計時之參考。實場之整治作業,對於自由相污染物之回收及下游區地下水污染整治,設計組合式現地處理技術。研究結果顯示圍堵污染源的控制機制能有效阻止污染團的擴大,對作業現場的干擾最少。地下水中之溶解態污染物的移除則藉由空氣注入及土壤氣體抽除系統執行,135天的作業期間污染物之去除率達87%以上,除苯的濃度值未能符合法規外 (320 µg/L),其餘化合物皆已達到整治標準。對於未能符合地下水管制標準的致癌物質-苯,則依據風險基準矯正行動之標準指引程序進行健康風險評估,利用場址參數及暴露模式推估受體之風險值,並回推風險基準篩選濃度苯的整治目標值,結果顯示在實場中長期暴露或終生暴露的致癌機率並不會比一般人高,風險值低於百萬分之一的(9.0E-07),地下水中苯的風險基準篩選濃度值為0.660 mg/L。污染團進一步藉由BIOPLUME III模式模擬,推估結果顯示污染團在自然衰減機制下呈現逐年縮減。綜合以上研究結果可知,對受石油碳氫化合物污染場址,可由場址評估所得之地質水文及污染相關參數擬定適當之環境管理策略,並藉由現地處理技術的組合加以整治。
This study presents detailed procedures for site assessment, remedial system design, and optimization of the remedial action operation (RAO) for the petroleum-hydrocarbons contaminated sites. In this work, a petroleum-hydrocarbons contaminated site located in southern Taiwan was selected. Contaminants of concerns (CoCs) from leaking underground storage tanks (USTs) and associated piping included mono-aromatics (e.g., benzene, toluene, ethyl-benzene, xylenes), naphthalene, and aliphatic hydrocarbons. The direct push (DP) technology was adopted for soil gas and soil samples collection. CoCs in the affected subsurface soils and the aquifers were determined by solid-phase micro-extraction/gas chromatography/mass spectrometry and several other analytic instruments. Site investigation via various tests was conducted to evaluate the geology, hydrogeology, bioactivity and free product availability. Based on results of specific site characterization, successful hydraulic containment and substantial recovery of observed free-phase petroleum product were achieved. During the process of field-scale remediation, a test cell which was equipped with a subset of monitoring points and numerous different function active wells (injection well, extraction well, monitoring well, soil gas monitoring probe, reference well and recovery well) was used for remedial system evaluation. A treatment train consisting of the source control treatment and in situ groundwater treatment technology was employed in this study. The former included a vertical containment barrier (i.e., slurry wall) and three pumping wells, whereas the latter included some passive remedial activities. Approximately 87% to 95% decline of the CoCs concentration was observed in those monitor wells after 135 days of operation. Results show that the spilled light non-aqueous phase liquids (LNAPLs) could be efficiently contained and removed using the treatment train system. The treatment train application could be successfully used to reduce the concentrations of CoCs in groundwater to satisfactory levels. Benzene was found to be the only compound in groundwater violating the groundwater pollution control standard. The risk assessment process including hazard identification and exposure assessment was conducted to assess the risk impact of benzene on the human health. Using the methodology approved by ASTM and American Petroleum Institute (API), the baseline carcinogenic risk (9.0E-07) and risk-based groundwater screening level for benzene (0.660 mg/L) were determined. The BIOPLUME III model was also applied to simulate the transport and fate of benzene in site groundwater. Results from this study indicate that site assessment coupled with the treatment train could be used to reduce the concentrations of CoCs in groundwater and soil to satisfactory levels efficiently and effectively.
第一章 緒論
1.1研究動機 1
1.2研究目的 3
1.3研究項目與架構 4
第二章 研究背景
2.1石油碳氫化合物 7
2.1.1工商民生使用、生產及儲製之狀態 7
2.1.2石油碳氫化合物對環境之風險潛勢 11
2.2土壤及地下水污染之法規演繹 12
2.3相關污染處理機制 14


頁次
第三章 研究方法、實驗設計與設備
3.1場址評估之程序 20
3.1.1場址調查 20
3.1.2場址特性調查之土壤取樣計畫及分析程序 22
3.1.3場址特性調查之地下水水文及水質解析 26
3.2實驗設備及偵測技術 35
3.2.1實驗設備及試劑 35
3.2.2固、氣、液相污染團之偵測技術及方法 45
3.3石油碳氫化合物特性的相關資料蒐集 48
3.4 污染潛勢評估 50
3.5實驗室規模及現地小範圍之整治可行性研究 52
3.5.1實驗室規模實驗方式 52
3.5.2現地小範圍實驗設計 54
3.6現地組合式處理技術研究 55
3.6.1浮油回收技術之作業策略 55
3.6.1.1浮油回收方式與設備 56
3.6.1.2浮油回收機制構工 63
3.6.1.3汲油實驗 66
3.6.2空氣注入及土壤氣體抽除的作業策略 69
3.6.2.1空氣注入及土壤氣體抽除技術發展與設計 70
頁次
3.6.2.2示蹤劑施放測試 77
3.7健康風險評估與污染整治決策
3.7.1健康風險評估與環境管理 80
3.7.2風險基準矯正行動準則發展 82
3.7.3健康風險評估流程 86
3.7.4暴露場景描述及建立概念模場 92
第四章 結果與討論
4.1建立關連性資料庫 95
4.2場址評估結果與討論 .105
4.2.1場址評估之初步調查結果 105
4.2.2固相微萃取運用於污染團偵檢技術之研發 107
4.2.3場址評估之污染物種鑑定結果 120
4.3場址評估之特性調查與詳細調查結果 .125
4.3.1地下水水文及水質參數 125
4.3.2土壤相關參數及土壤特性 133
4.4污染團在土壤及自然水體的污染潛勢 .141
4.5實驗室規模及現地小範圍試驗結果 .146
4.5.1實驗室批次試驗結果與討論 146
4.5.2現地小範圍施放試驗結果與討論 155
4.6組合式現地處理技術實驗結果 164
頁次
4.6.1截流整治牆及垂直向浮油回收工程機制績效 164
4.6.2空氣注入及土壤氣體抽除系統作業之地下水
監測結果 171
4.6.3空氣注入及土壤氣體抽除結果與討論 185
4.6.4土壤氣體檢測與示蹤劑評估推估之影響範圍 197
4.7人體健康風險觀點的暴露場景建立及風險度判定 .203
4.7.1污染源、曝露途徑、受體及場址參數
建立與修正 203
4.7.2場址風險度判定與風險特性描述 207
4.8污染團傳輸模擬與變化趨勢預測 ..214
第五章 結論與建議 .219
參考文獻 .229
【附錄】 .246
1.經濟部技術處,2001石化工業年鑑,工業技術研究院產經濟與資訊服務中心,台北市,2001。
2.中國石油公司,石油及石油化學工業概論,中國石油公司訓練所,嘉義市,1999。
3.中國石油公司,石油產品及其應用,中國石油公司訓練所,嘉義市,1996。
4.柯清水,石油化學概論,正文書局,台北市,1992。
5.石化工業雜誌,我國主要石油化學品供需統計,台北市,1999-2003。
6.行政院環保署,「土壤及地下水污染整治法」,1999。
7.G. M. Cole, “Assessment and Remediation of Petroleum
Contaminated Sites”, 1st Edition, CRC Press Inc., Boca Raton, Florida, 1994.
8.E. K. Nyer, “In Situ Treatment Technology”, Lewis Publishers, Inc., New York, 1996.
9.C. Nelson, Former industrial Facility, and Sonoma, CA, “Field Applications of In-Situ Remediation Technologies: Chemical Oxidation”, EPA 542-R-98-008.
10.J. W. Yu and I. Neretnieks, “Theoretical Evaluation of a Technique for Electrokinetic Decontamination of Soils”, Journal of Contaminant Hydrology, Vol. 26, pp. 291-299, 1997.
11.U. S. EPA, Superfund Innovative Technology Evaluation Program, Technology Profiles 10th Ed. EPA/540/R-99/500a, Vol. 1, pp. 194-195; 202-203; 224-225, 1999.
12.Innovative Treatment Technologies:Annual Status Report (ASR) Tenth Edition (EPA-542-R-01-004), EPA. Office of Solid Waste and Emergency Response, 2001.
13.楊金鐘、何信恩、車明道,“利用熱蒸氣注入/真空萃取技術現地整治受柴油污染土壤之最佳操作條件探討”,第十四屆廢棄物處理技術研討會論文集,第2.9-2.15頁,中壢市,1999。
14.張士元、王建寅、胡慶中、陳清涼、曹蓮桂、郭盈顯, “壤蒸氣萃取系統運用於加油站土壤地下水污染整治-高岡、高楠及大義街加油站案例”,石油季刊,第36卷,第1期,第39-50頁,2000。
15.K. K. C. Tse, S. L. Lo, and J. W. H. Wang, “Pilot Studies of In-Situ Thermal Treatment for Remediation of Penta-chloro-phenol-
Contaminated Aquifer”, Environmental Science & Technology, Vol. 35, No. 24, pp. 4910-4915, 2001.
16.U. S. Naval Facilities Engineering Service Center, “Surfactant-
Enhanced Aquifer Remediation (SEAR) Design Manual”, NFESC Technical Report TR-2206-ENV, 2002.
17.袁菁、高志明、王志哲,“受BTEX污染壤質砂土之土壤管柱清洗復育研究”,第十四屆廢棄物處理技術研討會論文集,第2.32-2.38頁,中壢市,1999。
18.楊金鐘、劉奇岳,“電動力-Fenton 法整治受柴油污染土壤之成效統計分析”,第七屆土壤污染整治研討會論文集,第171-180頁,台北市,2001。
19.童翔新、王家祥、杜仕明、歐育憲、葉奕宏,”臭氧處理石化污染土壤之可行性研究”,第十二屆環境規劃與管理研討會論文集,第54-60頁,中壢市,1999。
20.王美雪、吳先琪、陳維基、許心蘭, “土壤不均質性對有機污染物在土壤中傳輸之影響及模擬”,第十六屆廢棄物處理技術研討會論文集,第6-12頁,斗六市,2001。
21.童翔新、黃富明、王家祥, “臭氧於石化污染土壤復育技術之應用”,第十三屆廢棄物處理技術研討會論文集,第319-325頁,高雄市,1998。
22.R. M. Powell, D. W. Blowe, R. W. Fillham, D. Schultz, T. Divavec, R. W. Plus, J. L. Vogan, P. D. Powell, and R. Landis, “Permeable Reactive Barrier Technologies for Contaminant Remediation”, U. S. EPA, EPA/600/R-98/125, 1998.
23.ITRC, “Advanced Techniques on Installation of Iron Based Permeable Reactive Barriers and Non-iron Based Barrier Treatment Material By Permeable Reactive Barrier Wall Team of the ITRC”, 2002.
Website http://www.clu-in.org/conf/itrc/advprb_032102/
24.陳士賢,“利用現地沖洗法整治受污染的土壤”,台灣土壤及地下水環境保護協會,第二次年會及學術研討會,第17-40頁,台南市,2002。
25.黃翠瑩、陳士賢,“共同溶劑沖洗法對土壤有機污染物移除效率之研究”,第七屆土壤污染整治研討會論文集,第161-205頁,台北市,2001。
26.陳大麟、吳偉智,“應用界面活性劑處理汽、柴油地下污染之相態研究“,第三屆地下水資源及水質保護研討會論文集,第122-133頁,中壢市,1999。
27.
陳博彥、王雯、黃筠華、徐毓蘭、徐雅芬、羅志英、董金龍、陳啟祥,“受油品污染場址生物復育可行性評估與整治工程”,第五屆土壤污染防治研討會論文集,第263-284頁,台北市,1997。
28.盧至人,地下水的污染整治,國立編譯館,台北市,1998。
29.吳春生,“以生物曝氣法整治受地下儲槽洩漏之石化系有機污染物模場研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市,2001。
30.劉仲康、高志明、董正鈦,“以自然生物處理法整治油污染之土壤及地下水”,石油暨石化科技產業科技學術合作八十九年期末報告,高雄市,2001。
31.王奕森、范康登,“應用電動力法及微生物共同代謝分解法現地整治汽油與柴油污染之土壤及地下水”,第三屆地下水資源及水質保護研討會論文集,第88-96頁,中壢市,1999。
32.蔡在唐、薩支高,“探討土壤管柱淋洗及電動力法處理受油品污染土壤之移動性研究”,第一屆土壤與地下水技術研討會論文摘要集,第2-39頁,台中市,2003。
33.D. K. Asante-Duah, Managing Contaminated Sites, Lewis Publishers, Inc., 1st Edition, New York, 1995.
34.行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」, NIEA S410.60T,1995。
35.行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T,1995。
36.ASTM, “Standard Test Method for Specific Gravity of Soil”, ASTM D854-83, 1983.
37.ASTM, “Design and Installation of Groundwater Monitoring Wells in Aquifer”, ASTM D5092-90, 1990.
38.L. Aller, T. W. Bennett, G. Hackett, R. J. Petty, J. H. Lehr, H. Sedoris, D. M. Nielsen, and J. E. Denne, “Handbook of Practices for the Design and Installation of Ground-Water Monitoring Wells”, EPA/600/4-89/034, 1989.
39.行政院環保署環境檢驗所,「地下水採樣方法」,NIEA 103.50B,1998。
40.行政院環保署環境檢驗所,「水質檢測方法總則-保存篇」,NIEA 102.50A,1997。
41.行政院環保署環境檢驗所,「水中陰離子檢測方法-離子層析法」,NIEA W417.50T,1995。
42.行政院環保署環境檢驗所,「水中化學需氧量檢測方法─重鉻酸鉀迴流法」,NIEA W515.53A,1998。
43.C. W. Fetter, Applied Hydrogeology, 3rd Edition, pp. 247-251, Prentice-Hall, Inc., New Jersey, 1994.
44.C. W. Robert, and R. L. David, Handbook of Chemistry and Physics, 70th Ed., CRC Press Inc., Boca Ratom, Florida, 1990.
45.ChemFinder.Com, Database & Internet Searching, 2004.
Website http://www.chemfinder.com/
46.Total Petroleum Hydrocarbon Criteria Working Group Series, “Composition of Petroleum Mixtures”, Vol. 2, Amherst Scientific Publishers, Amherst, Massachusetts, May, 1998.
47.NIST Chemistry WebBook, 2004.
Website http://webbook.nist.gov/
48.Environmental defense .org, ScoreCard section, 2004.
Website http://www.scorecard.org/chemical-profiles/index.tcl
49.I. T. Marlowe, C. M. Bone, S. Byfield, M. A. Emmott, R. Frost, N. Gibson, L. P. Hagan, G. D. Hayman, M. E. Jenkin, P. H. R. Lindsell, C. L. Rose, H. Rudd, and A. Stacey, “The Categorization of Volatile Organic Compounds”, AEA Technology, 1995.
50.C. J. Newell, S. D. Acree, R. R. Ross, and S. G. Huling, “Light Nonaqueous Phase Liquids”, EPA/540/S-95/500, Washington, DC, 1995.
51.U. S. EPA, “Alternative Methods for Fluid Delivery and Recovery”, EPA/625/R-94/003, Washington, DC, 1994.
52.P. G. Hal White, “How to Effectively Recover Free Product at Leaking Underground Storage Tank Sites”, EPA/510r/96/001, 1996.
53.API, “A Guide to the Assessment and Remediation of Underground Petroleum Releases”, 3rd Edition, API Publication 1628, Washington, DC, 1996.
54.API, “Methods for Determination Inputs to Environmental Petroleum Hydrocarbon Mobility and Recovery Models”, API Publication 4711, Washington, DC, 2001.
55.C. J. Newell and J. A. Connor, “Characteristics of Dissolved Petroleum Hydrocarbon Plumes”, Soil and Groundwater Research Bulletin No. 8, American Petroleum Institute, Washington, DC, pp. 159-172, 1998.
56.Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE), “Test Plan and Technical Protocol for Free Product Recovery”, Brooks AFB, TEXAS, 1995.
57.Innovative Treatment Technologies: Annual Status Report (ASR) 11th Edition, EPA-542-R-03-009, EPA. Office of Solid Waste and Emergency Response (OSWER), February, 2004.
58.R. Miller, “Bioslurping”, Ground-Water Remediation Technologies Analysis Center (GWRTAC), 1996.
59.J. E. McCray and R. W. Falta, “Defining the Air Sparging Radius of Influence for Groundwater Remediation”, Journal of Contaminant Hydrology, Vol. 24, pp. 25-52, 1996.
60.C. D. Johnston, J. L. Rayner, B. M. Patterson, and G. B. Davis, “Volatilization and Biodegradation during Air Sparging of Dissolved BTEX-contaminated Groundwater”, Journal of Contaminant Hydrology, Vol. 33, pp. 377-404, 1998.
61.P. Johnson and A. J. Cristinbruce, “Effect of Flow Rate Changes and Pulsing on the Treatment of Source Zones by in Situ Air Sparging”, Environmental Science & Technology, Vol. 33, pp. 1726-1731, 1999.
62.S. Burns and M. Zhang, “Effects of System Parameters on the Physical Characteristics of Bubbles Produced through Air Sparging”, Environmental Science & Technology, Vol. 35, pp. 204-208, 2001.
63.D. H. Bass, N. A. Hastings, and R. A. Brown, “Performance of Air Sparging Systems: A Review of Case Studies”, Journal of Hazardous Materials, Vol. 72, pp. 101-109, 2000.
64.C. M. Aelion and B. C. Kirtland, “Physical versus Biological Hydrocarbon Removal during Air Sparging and Soil Vapor Extraction”, Environmental Science & Technology, Vol. 34, pp. 3167-3173, 2000.
65.黃美娟, “土壤復育現地注氣法-飽和層氣流之特性研究” ,中國醫藥學院環境醫學研究所碩士論文,台中市,1999。
66.顏伯穎,“應用數值方法模擬水下空氣注入法整治受非水性易污染區域之研究”,碩士論文,國立成功大學資源工程研究所,台南市,2001。
67.呂信傑,“數值模擬空氣注入法與土壤氣體萃取法去除揮發性污染物之研究”,碩士論文,國立台灣大學環境工程研究所,台北市,2002。
68.斯克誠,“蒸氣注入法去除地下水中有機氯化物之研究”,博士論文,國立台灣大學環境工程研究所,台北市,2002。
69.J. E. McCray, “Mathematical Modeling of Air Sparging for Subsurface Remediation: State of the Art”, Journal of Hazardous Materials, Vol. 72, pp. 237-263, 2000.
70.N. R. Thomson and R. L. Johnson, “Air Distribution during in Situ Air Sparging: An Overview of Mathematical Modeling”, Journal of Hazardous Materials, Vol. 72, pp. 265-282, 2000.
71.M. L. Benner, S. M. Stanford, L. S. Lee, and R. H. Mohtar, “Field and Numerical Analysis of in-situ Air Sparging: A Case Study”, Journal of Hazardous Materials, Vol. 72, pp. 217-236, 2000.
72.M. V. Vijay, B. P. Evan, S. R. Christopher, and C. S. John, “Dissolved Gases as Partitioning Tracers for Determination of Hydrogeological Parameters”, Environmental Science & Technology, Vol. 36, pp. 254-262, 2002.
73.J. S. Berkey, T. E. Lachmar, W. J. Doucette, and R. R. Dupont, “Tracer Studies for Evaluation of in situ Air Sparging and in-well Aeration System Performance at a Gasoline-Contaminated Site”, Journal of Hazardous Materials, B98, pp. 127–144, 2003.
74.U. S. Naval Facilities Engineering Service Center, Air Sparging Guidance Document, NFESC Technical Report TR-2193-ENV, 2001.
75.A. J. Buonicore, “Cleanup Criteria for Contaminated Soil and Groundwater”, ASTM Data Series: DS 64, Philadelphia, PA, 1995.
76.ASTM, American Society for Testing and Materials, “Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites”, ASTM Designation E1739-95, Pleasanton, California, 1995.
77.ASTM, American Society for Testing and Materials, “Standard Guide for Risk Based Corrective Action”, ASTM Designation E 2081-00, Pleasanton, California, 2000.
78.U. S. Environmental Protection Agency, “Risk-Based Decision- Making and Underground Storage Tanks Program”, 1997.
URL: http://www.epa.gov/swerust1/rbdm/index.htm.
79.J. D. Graham, “Historical Perspective on Risk Assessment in the Federal Government”, Toxicology, Vol. 102, pp. 29-52, 1995.
80.T. Kuiper-Goodman, “Mycotoxins: Risk Assessment and Legislation”, Toxicology Letters, Vol. 82/83, pp. 853-859, 1995.
81.G. Bickford, J. Toll, J. Hansen, E. Baker, and R. Keessen, “Aquatic Ecological and Human Health Risk Assessment of Chemicals in Wet Weather Discharges in the Sydney Region, New South Wales, Australia”, Marine Pollution Bulletin, Vol. 39, pp. 335-345, 1999.
82.A. A. Kuchuk, M. Krzyzanowski, and K. Huysmans, “The Application of WHO’s Health and Environment Geographic Information System (HEGIS) in Mapping Environmental Health Risks for the European Region”, Journal of Hazardous Materials, Vol. 61, pp. 287-290, 1998.
83.D. H. Bennett, A. L. James, T. E. Mckone, and C. M. Oldenburg, “On Uncertainty in Remediation Analysis: Variance Propagation from Subsurface Transport to Exposure Modeling”, Reliability Engineering and System Safety, Vol. 62, pp. 117-129, 1998.
84.M. K. Selgrade, “Use of Immunotoxicity Data in Health Risk Assessments: Uncertainties and Research to Improve the Process”, Toxicology, Vol. 133, pp. 59-72, 1999.
85.B. Mower, “A Multiple Source Approach to Acute Human Health Risk Assessments”, Waste Management, Vol. 18, pp. 377-384, 1998.
86.J. V. Oostdam, A. Gilman, E. Dewailly, P. Usher, B. Wheatley, H. Kuhnlein, S. Neve, J. Walker, B. Tracy, M. Feeley, V. Jerome, and B. Kwavnick, “Human Health Implications of Environmental Contaminants in Arctic Canada: A Review”, Science of Total Environment, Vol. 230, pp. 1-82, 1999.
87.A. J. Siniscalchi, S. J. Tibbetts, R. C. Beakes, X. Soto, M. A. Thomas, N. W. McHone, and S. Rydell, “A Health Risk Assessment Model for Homeowners with Multiple Pathway Radon Exposure”, Environment International, Vol. 22, pp. 739-747, 1996.
88.J. D. Pup, J. Kmiecik, S. Smith, and F. Reitman, “Improvement in Human Health Risk Assessment Utilizing Site- and Chemical-Specific Information: A Case Study”, Toxicology, Vol. 113, pp. 346-350, 1996.
89.K. Yoshida, S. Ikeda, and J. Nakanishi, “Assessment of Human Health Risk of Dioxins in Japan”, Chemosphere, Vol. 40, pp. 177-185, 2000.
90.I. A. Papazoglou, Z. Nivolianitou, O. Aneziris, M. D. Christou, and G. Bonanos, “Risk-Informed Selection of A Highway Trajectory in the Neighborhood of an Oil-Refinery”, Journal of Hazardous Materials, Vol. 67, pp. 111-144, 1999.
91.E. J. Bonano, G. E. Apostolakis, P. F. Salter, A. Ghassemi, and S. Jennings, “Application of Risk Assessment and Decision Analysis to the Evaluation, Ranking and Selection of Environmental Remediation Alternatives”, Journal of Hazardous Materials, Vol. 71, pp. 35-37, 2000.
92.Z. Chen, G. H. Huang, and A. Chakma, “Integrated Environmental Risk Assessment for Petroleum-Contaminated Site–A North American Case Study”, Water Science and Technology, Vol. 38, pp. 131-138, 1998.
93.R. L. Sielken, and C. Valdez-Flores, “Probabilistic Risk Assessment’s Use of Trees and Distributions to Reflect Uncertainty and Variability and to Overcome the Limitations of Default Assumptions”, Environment International, Vol. 25, pp. 755-772, 1999.
94.C. M. Kao, L. C. Wu, K. F. Chen, C. T. Lin, and G. C. C. Yang, “Application of Health Risk Assessment to Derive Cleanup Levels at a Fuel-Oil Spill Site”, Proceedings of ENVIRO 2002/IWA World Water Congress on CD, April 7-12, Melbourne, Australia, 2002.
95.K. F. Chen, L. C. Wu, C. M. Kao, G. C. C. Yang, and T. Y. Chen, “Using Risk Assessment Technique to Develop Remediation Goals at a Chemical Spill Site”, Journal of Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, Vol. 8, pp. 99-104, 2004.
96.G. A. Pascoe, M. J. Riley, T. A. Flotd, and C. L. Gould, “Use of a Risk-based Hydrogeologic Model to Set Remedial Goals for PCBs, PAH, and TPH in Soils during Redevelopment of an Industrial Site”, Environmental Science & Technology, Vol. 32, pp. 813-820, 1998.
97.I. Linkov, D. Burmistrov, J. Cura, and T. S. Bridges, “Risk-Based Management of Contaminated Sediments: Consideration of Spatial and Temporal Patterns in Exposure Modeling”, Environmental Science & Technology, Vol. 36, pp. 238-246, 2002.
98.F. I. Kfan and T. Husain, “Evaluation of a Petroleum Hydrocarbon Contaminated Site for Natural Attenuation using ‘RBMNA’ Methodology”, Environmental Modelling Software, Vol. 18, pp. 179-194, 2003.
99.F. I. Kfan and T. Husain, “Risk-base Monitored Natural Attenuation–A Case Study”, Journal of Hazardous Materials, Vol. B85, pp. 243-272, 2001.
100.Office of Solid Waste and Emergency Response, Soil Screening Guidance: User’s Guide, U. S. Environmental Protection Agency, Washington, DC, 1996.
101.RBCA Tool Kit, RBCA Tool Kit for Chemical Releases, Groundwater Services, Inc., Houston, TX, 1998.
102.Oregon Department of Environmental Quality, Waste Management & Cleanup Division, Guidance for Conduct of Deterministic Human Health Risk Assessments, 2000.
103.The Massachusetts Department of Environmental Protection (MADEP), “Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach”, 2001.
104.Total Petroleum Hydrocarbon Criteria Working Group Series, “Development of Fraction Specific Reference Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons”, Volume 4, Amherst Scientific Publishers, Amherst, Massachusetts, 1997.
105.American Society for Testing and Materials, “Technical & Professional Training, RBCA Fate and Transport Models: Compendium and Selection Guidance”, Pleasanton, California, 1999.
106.American Petroleum Institute, “Exposure and Risk Assessment Decision Support System”, Software Version 2.0, Washington, DC, 1999.
107.J. A. Connor, R. L. Bowers, S. M. Paquette, and C. J. Newell, “Soil Attenuation Model for Derivation of Risk-Based Soil Remediation Standards”, Groundwater Services, Inc., Houston, Texas, 1997.
108.中央氣象局,1961~2000 台灣南部雨量累計。
109.美商衛世敦國際公司,“地下水污染防治之基本規劃設計技術服務工作”,高雄,2000。
110.U. S. Environmental Protection Agency, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 on-line, 2000.
WebSite http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm
111.C. L. Arthur, L. M. Klllam, S. Motlagh, M. Lim, D. W. Potter, and J. Pawliszyn, “Analysis of Substituted Benzene Compounds in Groundwater Using Solid-phase Micro-extraction”, Analytical Chemistry, Vol. 26, pp. 979-983, 1992.
112.Z. Zhang and J. Pawliszyn, “Analysis of Organic Compounds in Environmental Samples by Headspace Solid Phase Microextraction”, Journal of High Resolution Chromatography, Vol. 16, pp. 689-692, 1993.
113.E. Y. Zeng and J. A. Noblet, “Theoretical Considerations on the Use of Solid-Phase Microextraction with Complex Environmental Samples”, Environmental Science & Technology, Vol. 36, pp. 3385-3392, 2000.
114.L. Black and D. Fine, “High Levels of Monoaromatic Compounds Limit the Use of Solid-Phase Microextraction of Methyl tert-Butyl Ether and tert-Butyl Alcohol”, Environmental Science & Technology, Vol. 35, pp. 3190-3192, 2001.
115.H. Prosen and L. Zupancic-Kralj, “Solid-Phase Microextraction”, Trends in Analytical Chemistry, Vol. 18, pp. 272-282, 1999
116.F. Hernandez, J. Beltran, F. J. Lopez, and J. V. Gaspar, “Use of Soild-Phase Microextrtion for the Quantitative Determination of Herbicides in Soil and Water Samples”, Analytical Chemistry, Vol. 72, pp. 4822-4826, 2000.
117.N. H. Snow, “Solid Phase Microextraction of Drugs from Biological Matrices”, Journal of Chromatography, Vol. 885, pp. 445-455, 2000.
118.O. Pinho, I. M. P. L. V. O. Ferreira, and M. A. Ferreira, “Solid-Phase Micro-extraction in Combination with GC/MS for Quantification of the Major Volatile Free Fatty Acids in Ewe Cheese”, Analytical Chemistry, Vol. 74, pp. 5199-5204, 2002.
119.American Society for Testing and Materials, “Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in the Finished Gasoline by Gas Chromatography/Mass Spectrometry”, D5769-98, Philadelphia, PA, 1998.
120.B. L. Wittkamp and D. C. Tilotta, “Determination of BTEX Compounds in Water by Solid-Phase Micro-extraction and Raman Spectroscopy”, Analytical Chemistry, Vol. 67, pp. 600-605, 1995.
121.L. Muller, E. Fattore, and E. Benfenati, “Determination of Aromatics by Solid Phase Micro-extraction and Gas Chromatography Mass Spectrometry in Water Samples”, Journal of Chromatography, Vol. 791, pp. 221-230, 1997.
122.B. K. Lavine, J. Ritter, A. J. Moores, M. Wilson, A. Faruque, and H. T. Mayfield, “Source Identification of Underground Fuel Spills by Solid-Phase Microextraction /High-Resolution Gas Chromatography / Genetic Algorithms”, Analytical Chemistry, Vol. 72, pp. 423-431, 2000.
123.D. C. Stahl and D. C. Tilotta, “Screening Method for Nitroaromatic Compounds in Water Based on Solid-Phase Microextraction and Infrared Spectroscopy”, Environmental Science & Technology, Vol. 35, pp. 3507-3512, 2001.
124.E. M. J. Verbruggen, W. H. J. Vaes, T. F. Parkerton, and J. L. M. Hermens, “Polyacrylate-Coated SPME Fibers as a Tool to Simulate Body Residues and Target Concentrations of Complex Organic Mixtures for Estimation of Baseline Toxicity”, Environmental Science & Technology, Vol. 34, pp. 324-331, 2000.
125.J. Poerschmann, T. Goarecki, and F. D. Kopinke, “Sorption of Very Hydrophobic Organic Compounds onto Poly (dimethylsiloxane) and Dissolved Humic Organic Matter: 1. Adsorption or Partitioning of VHOC on PDMS-Coated Solid-Phase Micro-extraction Fibers, A Never-Ending Story? ”, Environmental Science & Technology, Vol. 34, pp. 3824-3830, 2000.
126.J. Ai, “Soild-Phase Micro-extraction in Headspace Analysis Dynamics in Non-Steady-State Mass Transfer”, Analytical Chemistry, Vol. 70, pp. 4822-4826, 1998.
127.D. A. Cassada, Y. Zhang, D. D. Snow, and R. F. Spalding, “Trace Analysis of Ethanol, MTBE, and Related Oxygenate Compounds in Water Using Solid-Phase Microextraction and Gas Chromatography /Mass Spectrometry”, Analytical Chemistry, Vol. 72, pp. 4654-4658, 2000.

128.C. Zheng and G. D. Bennett, Applied Contaminant Transport Modeling, Theory and Practice, Van Nostrand Reinhold, New York, 1995.
129.J. Weaver, U.S. EPA, Office of Research and Development, Athens, Georgia, 2000.
WebSite http://www.epa.gov/athens/software/training/WebCourse/index.html
130.P. B. Bedient, H. S. Rifai, and C. J. Newell, Ground Water Contamination: Transport and Remediation, Prentice Hall, Inc., New Jersey, 1994.
131.莊順、郭文健,受油污染之地下水現地生物復育技術研究,第二十二屆廢水處理技術研討會論文集,第724-731頁,台北市,1997。
132.S. L. Race and P. M. Goeke, “Study of Natural Bioremediation Projects Using Time-Release Oxygen Compound”, In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compound, Battelle Press, Columbus, Ohio, pp. 295-300, 1999.
133.K. F. Chen, S. H. Lee, C. M. Kao, and L. C. Wu, “Development of Oxygen-releasing Barrier System to Remediate Petroleum -hydrocarbon Contaminated Groundwater”, International Chinese Petroleum and Petrochemical Technology Symposium, December 3-5, Kaohsiung, 2001.
134.D. Kelly and R. Hendreson, “Fate and Transport of Oxygen from Oxygen Release Compound”, In Situ Bioremediation of Petroleum Hydrocarbon and Other Orgnic Compound, Battelle Press, Columbus Ohio, pp. 301-306, 1999.
135.D. White, T. Schmidtke, and C. Woolard, “Laboratory Model of Petroleum Barrier in Arctic Alaska”, Journal of Hazardous Materials, B 67, pp. 313-323, 1999.
136.陳元章,“油料污染場址浮油回收歷線特徵之研究”,碩士論文,國立成功大學資源工程研究所,台南市,2001。
137.R. J. Charbeneau, “Models for design of Free-Product Recovery Systems for petroleum Hydrocarbon Liquids”, API Publication 4729, Washington, DC, 2003.
138.姚俊宇、洪宗憲、王純謙、陳裕鴻,“地下浮油回收方法實例探討”,第一屆海峽兩岸土壤及地下水污染整治研討會論文集,第 B60-B66頁,台北市,2002。
139.吳偉智、陳大麟、黃文彥,“RBCA 健康風險評估中數學模型之探討”,第四屆地下水資源與水質保護研討會論文集,第 87-93頁,屏東縣內埔鄉,2001。
140.C. M. Kao and R. C. Borden, “Site Specific Variability in BTEX Biodegradation under Denitrifying Conditions”, Ground Water, Vol. 35, pp. 305-311, 1997.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top