跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣侑修
研究生(外文):Yu-Hsiu Chiang
論文名稱:科技專案評選的專家模糊多準則決策
論文名稱(外文):The selection of public-financed R&D project using fuzzy MCDM
指導教授:朱斌妤朱斌妤引用關係
指導教授(外文):Pin-Yu Chu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:公共事務管理研究所
學門:社會及行為科學學門
學類:公共行政學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:131
中文關鍵詞:科技專案群體決策模糊層級分析模擬分析
外文關鍵詞:simulationfuzzy AHPpublic-financed R&D projectcrisp judgment matrix
相關次數:
  • 被引用被引用:39
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:6
產業技術研發是促進產業升級以及創造競爭力的重要因素,我國經濟部自1999年積極推動「業界開發產業技術計畫」的業界科技專案,透過專家學者審查以經費補助企業從事研發,鼓勵我國企業進行產業技術的研發創新,本研究自群體決策角度出發,提出模糊層級分析法(Fuzzy Analytical Hierarchy Process, FAHP)以建構科技專案評選決策分析,內容包含:(1)使用層級分析法建構「業界開發產業技術計畫」委員會對於研發計劃的評選準則與架構,(2)運用層級分析法以及模糊層級分析法,分析「業界開發產業技術計畫」評審委員對於該評選準則的判斷,(3)使用模擬來分析不同決策環境下「業界開發產業技術計畫」評審委員對各項準則的權重,(4)分析評審委員對於業界科專的看法與建議。本研究結果顯示評審委員最重視技術價值面的考量,其權重為0.389,其次是專案執行面(0.260)、潛在利益面(0.204)以及專案風險面(0.147),模糊層級分析法較適用在不確定性高的業界科技專案評選,此外,隨著決策環境的改變會造成評審委員改變部分準則的重要性排序,不同領域的評審委員由於領域專案特性的不同會導致對於評估準則有不同的權重。
Fuzzy Analytical Hierarchy Process (fuzzy AHP) is a helpful MCDM approach for the selection of public financing of cooperative R&D projects developed by firms in collaboration with government. A technical committee for Industrial Technology Development Program (ITDP) in Taiwan regularly evaluates and decides proper public financing of cooperative R&D projects. In this study, we first discuss important criteria for R&D projects selection. We apply fuzzy AHP to integrating decisions of members in the technical committee. Especially we utilize crisp judgment matrix instead of interval judgment matrix to integrate subject judgments of these members. Our results indicate that scientific & technology merit criterion (0.389) is most important considered in overall technical committees. Besides that, the project execution (0.260) is more important criteria than potential benefits (0.204) and project risk (0.147) in ITDP selection. Moreover, we utilize the simulation to analyze relative
important of criteria under risky environment. Our results also indicate that the relative important of criteria will reverse when technical committee faces different risk level. Generally speaking, the paper reveals below results: (1) the fuzzy AHP is an appropriate method in multi-criteria R&D projects selection; (2) the crisp judgment matrix is suitable to integrate subject judgments of technical committee; (3) the relative important of criteria will reverse under different risky environment.
第一章 緒論…………………………………………………1
第一節 研究背景……………………………………………1
第二節 研究方法及研究目的………………………………3
第三節 研究限制……………………………………………4
第四節 研究流程……………………………………………5
第二章 業界開發產業技術計畫……………………………6
第一節 經濟部科技專案……………………………………6
第二節 各國業界科專………………………………..……10
第三節 我國業界科專…………………………………..…14
第四節 業界開發產業技術計畫…………………………..17
第三章 研究發展專案評選......................... 26
第一節 研發專案評選的準..........................26
第二節 研發專案選擇模式..........................33
第三節 層級分析法................................42
第四節 模糊層級分析法............................48
第四章 研究設計................................. 57
第一節 建立業界科專層級分析架構..................57
第二節 問卷設計..................................61
第三節 應用模糊層級分析法分析業界科專層級模式....64
第五章 研究分析................................. 70
第一節 模糊層級分析法的權重分析..................70
第二節 模糊層級分析法的模擬與分析................75
第三節 整合各領域技委委員的群體模糊權重..........86
第四節 業界科專評審委員的訪談整理................90
第六章 研究結論與建議........................... 93
第一節 結論......................................93
第二節 研究建議...............................................97
第三節 後續研究建議..............................98
參考文獻…………………………………………………..100
附錄一 專家效度問卷………………………………………i
附錄二 模糊層級分析問卷…………………………………vi
參考文獻
中文文獻
方彥永 (2003)。知識經濟體系下政府協助產業創新之研究-以業界開發產業技術計畫為例。中山大學公共事務管理研究所未出版碩士論文。
朱豫文(2000)。研發專案選擇決策模式之研究-以軟體研發專案為例。國立台灣科技大學工業管理系未出版碩士論文。
行政院經濟建設委員會(2000)。知識經濟發展方案。http://www.cedi.cepd.gov.tw/index.php?fPath=1&CediID=029b532d1dc091bc03d6507292edc78f。
李明軒、邱如美(譯)(1996)。Porter, E. M.著。國家競爭優勢。台北:天下文化。
李華夏(譯)(1998)。Thurow, L. C.著。資本主義的未來。台北:立緒文化。
何蕙萍(2000)。組織協調成本與虛擬組織特性之研究—以電腦軟體業為例。彰化師範大學商業教育學研究所未出版碩士論文,彰化。
何雍慶 (1987)。工研院歷年來研究專案對產業影響之追蹤與分析,工業技術研究院研究報告。
吳萬益、林清河 (2000)。企業研究方法。華泰書局總經銷。
林欣吾(2002)。業界科專之績效評估機制。臺灣經濟研究月刊,25(11),72-77。
林治廷(2000)。科技研究發展專案的連續多期的效率評估(GIPOTE)模式。交通大學工工所未出版碩士論文。
洪靜宜(2000)。我國廠商參加業界科技專案動機之研究。國立政治大學財政研究所未出版碩士論文,台北。
徐作聖(1999)。科技政策與國家創新系統。台北:華泰文化事業股份有限公司。
袁建中,黃志男,張寶誠 (1999)。資料包絡分析法在科技專案執行效率評估的應用-以能源科技研發專案為例。科技管理學刊,4 (1),17-38。
徐村和、楊宗欣(2000),應用模糊層級分析法評選廣告媒體,管理與系統,7(1),19-40。
楊千 (2000)。科技專案計畫績效評估。研考雙月刊,24( 4),30-36。
陳正福(2001)。研發活動之資源基礎分析-以主導性新產品開發計畫廠商為例。國立台灣科技大學企業管理系未出版碩士論文,台北。
陳嘉萍(2002)。政府研發獎助與中小企業研發創新關係之研究-以新竹科學園區廠商為例。國立中央大學產業經濟研究所未出版碩士論文,中壢。
葉勝年 (1991)。科技發展專案計畫追蹤驗證評估模式之研究。經濟部科技顧問室。
董鍾明 (2001)。研發效率評估之資料包絡分析法實證研究-以主導性新產品開發計畫為例。國立台灣科技大學企業管理系未出版碩士論文。
郭雍信 (2003)。資料包絡分析法應用於科技研發專案計畫績效評估之研究-以XX科學研究院為例。國防管理學院資源管理研究所未出版碩士論文。
蘇雲一 (1998)。資料包絡分析法與比例分析法運用於科技專案效率評估之研究。國立交通大學管理科學研究所未出版碩士論文。
戴佳恩、何秋萍、陳彥瑋、宋恩生(2004)。人工智慧與類神經網路簡介。http://www.im.ntu.edu.tw/~b8705005/report/AIrpt.htm
經濟部技術處 (2004)。業界科專操作手冊。台北:經濟部。
經濟部技術處(2003)。業界開發產業技術計劃成果摘要彙編。台北:經濟部。
劉儒俊(2002)。行銷資源最適配置模式:Fuzzy AHP之應用。國立中正大學企業管理研究所未出版碩士論文,嘉義。
顧淑馨(譯)(1992),Thurow, L. C.著,世紀之爭,台北:天下文化。
中華民國科學技術統計要覽(2003)。2003年11月10日取自http://www.nsc.gov.tw/tech/pub_data_main.asp。
中華民國科技白皮書(1997)。2004年5月30日取自
http://www.stic.gov.tw/stic/policy/scimeeting/whitepaper/index.htm。
中小企業廳(2004)。2004年5月30日取自
http://www.chusho.meti.go.jp。
產業技術綜合研究所(2004)。2004年5月30日取自
http://www.aist.go.jp。
經濟產業省(2004)。2004年5月30日取自
http://www.meti.go.jp/policy/innovation_policy。
經濟部技術處(2003a)。2003年11月10日取自
http://innovation1.tdp.org.tw/content/application。
經濟部技術處(2003b)。2003年11月10日取自
http://doit.moea.gov.tw/03know/product.asp。
經濟部技術處(2004a)。2004年5月25日取自
http://innovation1.tdp.org.tw/group/application/tdp_itdp/index.php。
經濟部技術處(2004b)。2004年5月25日取自
http://doit.moea.gov.tw/tier。
韓國科技部(2004)。2004年5月25日取自
http://www.most.go.kr/

英文文獻
Al-Mazidi, S. & Ghosn, A.A. (1997). A management model for technology and R&D selection. International Journal of Technology Management, 13(5/6), 525-541.
Al-Harbi, K. M. A. (2001). Application of AHP in project management. International Journal of Project Management,9, 19-27.
Alidi, A. (1996). Use of the analytic hierarchy process to measure the initial viability of industrial projects. International Journal of Project Management, 14(4), 205–208.
Archer, N. P. & Ghasemzadeh, F. (2000). An integrated framework for project portfolio selection. International Journal of Project Management, 17(4), 207-216.
ATP (2004). Overview of ATP. http://www.atp.nist.gov/atp/overview.htm.
Baker, N.R. (1974). R&D project selection models: An assessment. IEEE Transactions on Engineering Management,EM-21, 4,165-171.
Baker, M. R. & Freeland, J. (1975). Recent advances in R&D benefit measurement and project selection: where we stand. IEEE Transactions on Engineering Management, EM-11, 124-134.
Baker, M.R. & Pound, W.H. (1964). R and D project selection: Where we stand. IEEE Transactions on Engineering Management, December, 125-134.
Balachandra, R. & Friar, J.H. (1997). Factors for success in R&D projects and new product innovation: a contextual framework. IEEE Transactions on Engineering Management, 44 (3), 276-287.
Baltes, B.B., Dickson, M.W., Sherman, M.P., Bauer, & LaGanke, J.S. (2002). Computer-Mediated Communication and Group Decision Making: A Meta-Analysis. Organizational Behavior and Human Decision Processes, 87(1), 156-179.
Ballesteros, J. A. & Rico, A. M. (2001). Public financing of cooperative R&D projects in Spain: The Concerted Projects under the National R&D Plan. Research Policy, 30(4), 625-641.
Belton, V. & Gear, T.(1983). On a Short-coming of Saaty''s Method of Analytic Hierarchies. Omega, 11(3), 227-230.
Bilalis, N.& Lolos, D., Antoniadis, A., Emiris, D. (2002). A fuzzy sets approach to new product portfolio management. Engineering Management Conference, 2002. IEMC ''02. 2002 IEEE International, 1, 485 – 490.
Brenner, M. S. (1994). Practical R&D project prioritization. Research. Technology. Management, 27(5), 38–42.
Bhat, V. (1991). Generic risk reduction strategies for R&D projects. Technology Management : the New International Language, 262 – 265
Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233-247.
Buckley, J.J., Feuring, T., & Hayashi, Y. (2001). Fuzzy hierarchical analysis revisited. European Journal of Operational Research, 129, 48-64.
Chen, S. M.,(1996). Evaluation weapon system by AHP using fuzzy arithmetic operation. Fuzzy Set and Systems, 77, 265-276.
Cheng C. H. (1996). Evaluation naval tactical missile system by fuzzy AHP based on the grade value of membership function. European J. Oper. Res, 96, 343-350.
Cheng, C. H. & Mon, D.L. (1994). Evaluation weapon system by AHP based on fuzzy scales. Fuzzy Set and Systems, 63, 1-10.
Chien, C. F. (2002). A portfolio-evaluation framework for selection R&D projects. R&D Management, 32(4), 359-369.
Chu, P.Y., Hsu, Y.L., & Fehling, M. (1996). A decision support system for project portfolio selection. Computers in Industry, 32, 141-149.
Clemen, R.T. (1991), Making hard decisions: An introduction to decision analysis, PWS-KENT Publishing Company.
Cetron, M., Martino, J., & Roepcke, L. (1967). The selection of R&D program content-survey of quantitative methods. IEEE Transactions on Engineering Management, EM-14, 4-13.
Coldrick, S., Lawson, C.P., Ivey, P.C., & Lockwood, C. (2002). A decision framework for R&D project selection. IEEE Engineering Management, 413-418.
Cooper, R., Edgett, S., & Kleinschmidt, E. (2001). Portfolio management for new product development: results of an industry practices study. R&D Management, 31(4), 361-380.
Costello, D. (1983). A practical approach to R&D project selection. Technological Forecasting and Social Change, 23, 353-368.
Csutora, R. & Buckley, J.J. (2001). Fuzzy hierarchical analysis: the Lambda-Max method. Fuzzy sets and Systems, 120, 181-195.
David, P. A., Toole A. A., & Hall, B. H. (2000). Is public R&D a complement or empirical analysis based on survey data for Swiss manufacturing, Research Policy, 25, 633-645.
Doctor, R.N., Newton, D.P., & Pearson, A. (2001). Managing uncertainty in research and development. Technovation, 21(2), 79.
Dyer, R. F., Forman, E. H., & Mustafa, M. A.(1992) Decision Support for Media Selection Using the Analytical Hierarchy Process. Journal of Advertising, 21, 59-72.
Elkington, P. & Smallmman, C. (2002). Managing project risk: a case study from utilities sector. Interbation Journal of Project Management, 20, 49-57.
Fahrni, P. & Spatig, M. (1990). An application-oriented guide to R&D project selection and evaluation methods. R&D Management, 20(2), 155-171.
Feldman, M. P. & Kelly, M.R. (2003a). Leveraging research and development: Assessing the impact of the U.S. advanced technology program. Small Business Economics, 20, 153-165.
Feldman, M. P. & Kelly, M.R. (2003b). http://www.atp.nist.gov/eao/ir-6577.pdf.
Gaber, M.T., Rabelo, L.C., & Hosny, O.A. (1992). An integrated artificial neural networks model for industrial projects risk assessment. Engineering Management Conference, 1992. “Managing in a Global Environment”. 1992 IEEE International , 206 – 210.
Gargiulo, G.R., Hannoch, J., Hertz, D.B., & Zang, T. (1961). Developing systematic procedures for directing research programs. IRE Transaction on Engineering Management, EM-8, 24-29.
Ghasemzadeh, F. & Archer, N. P. (2000). Project Portfolio Selection through Decision Support. Decision Support Systems, 29, 73-88.
Guellec, D. & van Pottelsberghe de la Potterie, B. (2003). The impact of public R&D expenditure on business R&D. Economics of Innovation and New Technologies, 12(3), 225-243.
Hall, D. & Nauda, A. (1990). An interactive approach for selecting IR&D projects. IEEE Transaction on Engineering Management, 37(2), 126-132.
Henriksen, A. D. & Traynor, A. J. (1999). A Practical R&D Project-Selection Scoring Tool. IEEE Transactions on Engineering Management, 46(2), 72.
Hollenstein, H. (1996). A composite indicator of a firm’s innovativeness. An substitute for private R&D? A review of the econometric evidence. Research Policy, 29(4/5), 497-529.
Hsu, Y.G.., Tzeng,G. H., & Shyu, J.Z. (2003). Fuzzy multiple criteria selection of government-sponsored frontier technology. R&D projects. R&D Management, 33(5), 539-550.
Hsu, C.W. & Chiang, H.C. (2001). The government strategy for the upgrading of industrial technology in Taiwan. Technovation, 21(2), 123-132.
Jang, W. R. (1991). Hierarchical decision process. IEEE Technology Management : the New International Language, 595-599.
Kelly, J.R. & Kaarau, S.J. (1999). Group decision making: the effects of initial preferences and time pressure. Personality and Social Psychology Bulletin , 25(11), 1342.
Kondo, M. (2004). R&D Evaluation in Japanese MITI, http://www.apecevalu.org/content/Japan-1.htm.
Kutlaca, D. (1997). Multicriteria-based procedure as decision support in the selection of government financed R&D project. Yugoslav Journal of Operations Research, 7(1), 133-148.
Kwong, C.K. & Bai, H. (2002). A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function development. Journal of Intelligent Manufacturing, 13, 367-377.
Laarhoven, P.J.M. & Pedrycz, W. (1983). A Fuzzy Extension of Saaty''s priority theory. Fuzzy Sets and Systems, 11(3), 229-241.
Lahdalma, R. & Salminen, P. (2001). SMAA-2: Stochasitc multicriteria acceptability analysis for group decision making. Operations Research,49(3), 444-455.
Lai, V.S., Wong, B.K., & Cheung, W. (2002). Group decision making in a multiple criteria environment. European Journal of Operation Research, 137, 134-144.
Lious, T.S. & Wang, M.J.J. (1992). Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems, 50, 247-255.
Lee, M.& Om, K. (1996). Different factors considered in project selection at public and private R&D institutes. Technovation, 16(6), 271-276.
Lee, M., Son, B. & Om, K. (1996). Evaluation of national R&D projects in Korea. Research Policy, 25, 808-818.
Lee, J. W. & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computer Operation. Research, 27, 367–382.
Leung, H.M.,Chuah, K.B., & Tummala, V.R. (1998). A Knowledge-based System for Identifying Potential Project Risk. Omega, 26(5), 623-638.
Liberatore, M.J. & Titus, G.J. (1983). The practice management science in R&D project management. Management Science, 29(8), 962-975.
Liberatore, M.J. (1987). An extension of the analytic hierarchy process for industrial R&D project selection and resource allocation. IEEE Transactions on Engineering Management, 34, 12–18.
Linstone, H. A. & Turoff, M. (1975). The Delphi Method: Techniques and Applications. Addison-Wesley, Reading, Massachusetts.
Linto, J.D., Walsh, S.T., Kirchhoff, B.A., Morabito, J., & Merges, M. (2000). Selection of R&D projects in a portfolio. IEEE, 506-511.
Lockett, G., Hetherington, B. & Yallup, P. (1986). Modeling a research portfolio using AHP: A group decision process. R&D Manage,16(2), 151–160.
Machacha L.L. & Bhattacharya, P. (2000). A fuzzy-logic-based approach to project selection. IEEE Transactions on Engineering Management, 47(1), 65-73.
McCarthy, J. (2003). What is artifical intelligence? http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
Mohamed, S. & McCowan, A.K. (2001). Modelling project investment decisions under uncertainty using the possibility theory. The International Journal of Project Management, 19(4), 231-241.
Meade, L.M. & Presley, A. (2002). R&D Project Selection Using the Analytic Network Process. IEEE Transactions on Engineering Management, 49(1), 59-66.
Mechlin, G. & Berg, D. (1980). Evaluation research-ROI is not enough. Harvard Business Review, 59(5), 93-99.
Miller, M. (1993). Enhancing Regional Analysis With the Delphi Method. Review of Regional Studies, 23, 191-212.
Millet, I. & Harker, P.T. (1990). Globally Effective Questioning In the Analytic Hierarchy Process. European Journal of Operational Research, 48, 88-97.
Mitchell, G. & Hamilton, W. (1988). Managing R&D as a strategic option. Research Technology Management, 31(3), 15–22.
Mottley, C.M. & Newton, R.D. (1959). The selection of projects for industrial research. Operations Research, 7, 740-751.
Mustafa, M.A. (1991). Project risk assessment using the Analysis Hierarchy Process. IEEE transactions on engineering management, 38(1), 46-52.
NSC (2004). https://web01.nsc.gov.tw/wtp/index.jsp.
OECD (2003). Main Science and Technology Indicators 2003/1. Paris: Organisation for Economic Co-operation and Development.
Oral, M., Kettani, O., & Lang, P. (1991). A methodology for collective evaluation and selection of industrial R&D projects. Management Science, 37(7), 871-885.
Pandy, I.N. & Jang, A. (1996). Venture capital for financial technology in Taiwan. Technovation, 16(9), 499-514.
Piric, A., Reeve, N., & Buwalda, J. (2004). Evaluation of Public Investment in S&T: Outcome Focus Learning for an Effective Integrated Management Practice. http://www.apecevalu.org/content/newzealand-2.htm.
Pound, W.H. (1964). Research project selection: TestinG a model in the field. IEEE Transaction on Engineering Management, EM-11, 16-22.
Ruegg, R. & Feller, I. (2004). A Toolkit for Evaluating Public R&D Investment Models, Methods, and Findings from ATP''s First Decade. http://www.atp.nist.gov/eao/gcr03-857/pdfs/part1a.pdf.
Sackman, H. (1975), Delphi Critique: Expert Opinion, Forecasting, and Group Process. Lexington Books, Lexington, Massachusetts.
Santhanam, R. & Kyparisis, J. (1995). Multiple criteria decision model for information system project selection. Computers Operations Research, 22(8), 807-818.
Satty. T.L. (1980). A Analytic Hierarchy Process. New York: McGraw-Hill.
Schmidt, R.L. & Freeland, J.R. (1992). Recent process in modeling R&D project selection processes. IEEE Transactions on Engineering Management,39(2), 189-201.
Satty. T.L. & Vargas, L. G. (1984). The legitimacy of rank reversal. Omega, 12(5), 513-516.
Sounder, W.E. (1973). Analytical effectiveness of mathematical models for R&D project selection. Management Science, 19(8), 907-923.
Sounder, W.E. & Mandakovic, T. (1986). R&D project selection models. Research Technology Management, 29(4), 36-42.
Stanley, M. G. (2004). Advance technology program. http://www.atp.nist.gov/atp/kit-04/chapt1.pdf.
Stewart, R. & Mohamed, S. (2002). IT/IS projects selection using multi-criteria utility theory. Logistic information management , 15(4), 254-270.
Tian, Q., Ma, J., Liang, C.J., Kwok, R.C.W., Liu, O., & Zhang, Q. (2002). An Organizational Decision Support Approach to R&D Project Selection. Proceedings of the 35th Hawaii International Conference on System Sciences.
Triantophyllou, E. & Lin, C. T. (1996). Development and Evaluation of Five Fuzzy Multiattribute Decision-Making Methods. International Journal of Approximate Reasoning, 14, 281-310.
Walker, R.W. (2000). Assessment of technical risks. Management of Innovation and Technology, 2000. ICMIT 2000. Proceedings of the 2000 IEEE International Conference on , 1 , 402 - 406 .
Wind, Y. & Saaty, T. L. (1980). Marketing Applications of The Analytic Hierarchy Process. Management Science, 26(7), 641-657
Williams, T. (1995). A classified bibliography of recent research relating to project risk management. European Journal of Operational Research, 85, 18-38.
Yapp, T. (2004). From Opportunities to Outcomes – Evaluating Research Priorities and Performance in CSIRO Australia.http://www.apecevalu.org/content/Australia-2.htm
Zadeh, L.A. (1965). Fuzzy set. Information and control, 8(3), 338-353.
Zeleny, M. (1982). Multiple criteria decision-making. McGraw-Hill, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top