跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪嘉駿
研究生(外文):Chia-Chun Hung
論文名稱:光點位置演算法對水下雷射測距品質之影響
論文名稱(外文):The Effect of Peak Detection Algorithms on the Quality of Underwater Laser Ranging
指導教授:陳信宏陳信宏引用關係
指導教授(外文):Hsin-Hung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海下技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:田口方法光點位置演算法多項式最小平方近似水下主成份分析
外文關鍵詞:Peak detection algorithmPrinciple component analysisLeast-squares approximationUnderwaterTaguchi method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用不同雷射光點位置演算法來探討水下雷測距之品質,並針對不同幾何光點外形進行測距品質的探討,同時運用多項式最小平方近似處理來探討測距品質,希望瞭解不同階次多項式迴歸對測距品質的影響。在光點位置演算法探討方面,本文採用亮度重心法、二次重心法及主成份分析法三種光點位置演算法對雷射光點原始影像及經多項式最小平方近似後處理影像進行光點位置估算。此外為瞭解不同雷射光點外型對測距品質之影響,本研究將雷射光點分別調整為圓形、垂直長軸橢圓、偏斜長軸橢圓、水平長軸橢圓四種幾何外形。實驗結果顯示雷射光點經線性最小平方近似處理所得到的品質為最佳,且雷射光點影像未經影像處理前,採用光點位置演算法所得到的差異較大,一旦雷射光點影像經線性最小平方近似處理後,光點位置演算法所得到的測距品質差異性較小,由此可知,線性最小平方近似處理法能夠降低測距品質與光點位置演算法的相依性。此外實驗結果顯示不論是原始影像或是經過最小平方近似處理過的影像,以主成份分析法所得到的測距品質最佳,二次重心法次之,亮度重心法最差,而在三種光點位置演算法中,只有主成份分析法的演算流程與橢圓雷射光點的方向性有關,而且以主成份分析法所得到的測距品質最好,由此可知雷射橢圓光點的方向性為影響其測距品質的重要因素。
Laser based underwater triangulation ranging is sensitive to the environmental conditions and laser beam profile. Also, its ranging quality is greatly affected by the algorithm choices for peak detection and for image processing. By utilizing the merging least-squares approximation for laser image processing, it indeed succeeds in increasing quality of triangulation ranging in water; however, this result was obtained on the use of a laser beam with nearly circular cross-section. Therefore, by using an ellipse-like laser beam cross-section for range finding, we are really interested in understanding the quality of range finding with different peak detection algorithms. Besides, the ellipse orientation of the laser spot projected on the image plane would be various. We are also interested in learning about the relationship between the ellipse orientation and the quality of range finding. In this study, peak detection algorithms are investigated by considering four different laser beam cross-sections which are ircle, horizontal ellipse, oblique ellipse, and vertical ellipse. First, we employ polynomial regression for processing laser image to study the effect of polynomial degree on quality of triangulation ranging. It was found that the linear regression achieves the best ranging quality than others. Then, according to this result, the ranging quality associated with peak detection is evaluated by employing three different algorithms which are the illumination center, twice illumination center and the illumination center with principal component analysis. We found that the ranging quality by using the illumination center with principal component analysis is the best, next is twice illumination center, and last the illumination center. This result indicates that the orientation of elliptical laser beam has an influential effect on the quality of range finding. In addition, the ranging quality difference among peak detection algorithms is significantly reduced by implementing the merging least-squares approximation rlaser image processing. This result illustrates that the merging least-squares approximation does reduce the effect of peak detection algorithm on the quality of range finding.
第一章 緒論
1.1前言
1.2研究動機與目的
1.3文獻回顧
1.4論文架構
第二章 研究方法
2.1影像多項式最小平方近似處理法
2.1.1影像處理流程
2.1.2影像處理演算法
2.2定義光點幾何外形
2.3主成份分析法
2.3.1主成份分析法概述
2.3.2主成份分析法的流程
2.4雷射光點位置演算法
2.4.1亮度重心法
2.4.2二次重心法
2.4.3主成份分析法
第三章 實驗架構與規劃
3.1實驗設備
3.2品質特性
3.3實驗因子與水準
3.4直交表配置
第四章 實驗結果
4.1結果與分析
4.1.1圓形光點
4.1.2垂直長軸橢圓光點
4.1.3偏斜長軸橢圓光點
4.4.4水平長軸橢圓光點
4.2驗證實驗
4.2.1圓形光點
4.2.2垂直長軸橢圓光點
4.2.3偏斜長軸橢圓光點
4.2.4水平長軸橢圓光點
4.3結論
第五章 光點位置演算法之測距品質
5.1原始影像光點位置的估算
5.1.1亮度重心法
5.1.2二次重心法
5.1.3主成份分析法
5.2影像處理後之光點位置的估算
5.2.1亮度重心法
5.2.2二次重心法
5.2.3主成份分析法
第六章 討論與結語
1. Marques, U. Nunes and A. T. Almeida, "A New 3D Optical Triangulation Sensor for Robotics," Proceedings of IEEE Advanced Motion Control, 29 June - 1 July 1998, Coimbra, Portugal, Piscataway, pp. 512-517, 1998.
2. H. H. Chen and C. J. Lee, "A Simple Underwater Video System for Laser Tracking," OCEANS 2000 Conference Proceedings, 11-14 September 2000, Providence, RI, USA, Vol. 3, pp. 1543-1548, 2000.
3. C. C. Wang, S. W. Shyue and S. H. Cheng, "Underwater Structure Inspection with Laser Light Stripes," Proceedings of the 2000 International Symposium on Underwater Technology, 23-26 May 2000, Tokyo, Japan, pp. 201-205, 2000.
4. H. H. Chen, "Identification of Influential Factors for Underwater Laser Imaging," Oceans 2001 Conference Proceedings, 5-8 November 2001, Honolulu, Hawaii, USA, Vol. 4, pp. 2549-2556, 2001.
5. A. C. Duxbery, A. B. Duxbrey and K. A. Sverdrup, An Introduction to the World''s Oceans, 6th Ed., McGraw-Hill, 2000.
6. H. H. Chen and C. M. Wu, "An Algorithm of Image Processing for Underwater Range Finding by Active Triangulation,"Ocean Engineering, Vol. 31, No. 8-9, pp. 1037-1062, 2004.
7. F. M. Caimi and A. G. Bession, "Surface Mapping and Imaging Using Low Power Lasers," OCEANS ''94 Conference Proceedings, 13-16 September 1994, Brest, France, Vol. 2, pp. 716-721, 1994.
8. A. Gordon, "Underwater Line Scan Technology," Underwater Intervention ''93 Conference Proceedings, 18-20 January 1993, New Orleans, LA, USA, pp. 164-170, 1993.
9. J. Hecht. Understanding Laser-An Entry-Level Guide, IEEE Press, New York, 1992.
10. P. Saint-Marc, J. L. Jezouin, and G. Medioni, "A Versatile PC-Based Range Finding System," IEEE Transactions on Robotics and Automation, Vol. 14, No. 1, pp. 60-68, 1998.
11. J. Clark,A. M. Wallace, and G. L. Pronzato, "Measuring Range using a Triangulation Sensor with Variable Geometry, " IEEE Transactions on Robotics and Automation, Vol. 7, No. 2, pp. 250-256, 1991.
12. M. Bellin, D. Maddalena, and R. Visentin, "The TV-Trackmeter: An Underwater Non-contact Position Sensor," Proceedings of the Symposium on Autonomus Underwater Vehicle Technology, 5-6 June 1990, Washington D. C., USA, pp. 270-274, 1990.
13. H. H. Chen, "Variation Reduction in Quality of an Optical Triangulation System Employed for Underwater Range Finding," Ocean Engineering, Vol. 29, No. 15, pp. 1871-1893, 2002.
14. A. Nevis, "Low Contrast Enhancement for Electro-Optic Data," SPIE Proceedings for Detection and Remediation Technologies for Mines and Minelike Targets, 21-24 April 1997, Orlando, FL, USA, Vol. 3079, pp. 333-344, 1997.
15. A. Nevis, "Image Characterization and Target Recognition in the Surf Zone Environment," SPIE Proceedings for Detection and Remediation Technologies for Mines and Minelike Targets, 8-12 April 1996, Orlando, FL, USA, Vol. 2765, pp. 46-57, 1996.
16. P. J. Ross, Taguchi Techniques for Quality Engineering, 2nd Ed., McGraw-Hill, New York, 1996.
17. Z. L. Pereira and E. Aspinwall, "Taguchi Methods in Food Processing," IEE Colloquium on Automation and Control in Food Processing, 3 April 1992, London, pp.7/1-7/7, 1992.
18. E. Wojciechowski and M. S. Phadke, "Optimizing Video Compression Using Robust Parameter Design," 2001 IEEE Global Telecommunications Conference, 25-29 November 2001, San Antonio, TX, USA, Vol. 4, pp. 2634-2639, 2001.
19. M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991.
20. M. A. Thurk and A. P. Pentland, "Face Recognition Using Eigenfaces," IEEE Computer Society Conference, Vol. 2, pp. 586-591, 1991.
21. Y. Iwai, K. Watanabe, Y. Yagi and M. Yachoda, "Gesture Recognition by Using Colored Gloves," IEEE International Conference on Systems, Man, and Cybernetics ,Vol. 1, No. 10, pp. 76-81, 1996.
22. C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 6th Ed., Addison-Wesley, Boston, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top