跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃馨儀
論文名稱:多階存貨系統在逐一補貨策略下之METRIC模式探討
論文名稱(外文):The METRIC Model under One-for-one Policy in Multi-Echelon Inventory System
指導教授:溫于平溫于平引用關係
指導教授(外文):Ue-Pyng Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:51
中文關鍵詞:多階存貨系統METRIC逐一補貨策略
外文關鍵詞:Multi-echelon inventory systemMETRICone-for-one inventory policy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:1
本論文主旨是利用METRIC模式以探討多階存貨系統的存貨整合問題。文中將原先的二階存貨系統擴展到三階存貨系統,使將原本求得的區域最佳解能夠轉換成為系統最佳解,且藉由實驗的分析可以驗證出METRIC的適用範圍,並且定義METRIC當中所需參數的設定適合範圍,以使METRIC模式求出的近似解和正確解的差距可在一定合理範圍之內。
本研究首先定義一包含單一倉儲和多個零售商的二階存貨系統,該系統採行逐一補貨策略處理訂單,我們利用METRIC模式求解缺貨數目的期望值,以達系統中缺貨成本最小化,並發展出一套正確解法以便驗證METRIC模式求出的近似解。本研究進一步定義一包含單一供應商、多個倉儲以及各倉儲底下多個零售商的三階存貨系統,該系統各項假設同於二階存貨系統,同樣利用METRIC模式求解缺貨數目的期望值,並且發展出正確解法與METRIC模式求出的近似解進行比較。
由本論文可以發現:METRIC模式適用範圍為低需求的高價值產品,故一般經常運用於航空業和軍事產業零件補充上。透過正確的參數設定,我們可以將METRIC所求出的近似值逼近正確解,以便求出一合理數值。
The purpose of this thesis is to investigate the inventory integration problem in the multi-echelon inventory system. We expand the two-echelon inventory system to the three-echelon inventory system to achieve the global optimization. We will verify the application range of the METRIC model and decide the reasonable range of parameter setting by running the numerical results, in order to reduce the difference between the METRIC approximation and the exact solution.
We consider a two-echelon inventory system consists of one warehouse and multiple retailers, which follows the one-for-one inventory policy, and formulate the METRIC model to find the expected number of backorders by minimizing the backorder cost. We then develop the exact solution method corresponds to the METRIC approximation solution method. Furthermore, we consider a three-echelon inventory system consists of one supplier, multiple warehouses and multiple retailers, which has the same assumptions as described in the two-echelon inventory system. Again, we develop the exact solution method corresponds to the METRIC approximation solution method.
In this study, we found that the METRIC model is appropriate when the demand is low, which can be applied such as in the Air Force and the military industry. By the accurate parameter setting, we can show that the solution found by the METRIC model is close to the exact solution.
Abstract i
Table of Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation of the Study and its Objectives 2
1.3 Scope and Process of the Study 4
1.4 Framework of the thesis 4
Chapter 2 Literature Review 7
2.1 Inventory Policy 7
2.2 Inventory system 9
2.2.1 Multi-level-inventory system 10
2.2.2 Two-Echelon Inventory System 11
2.3 Multi-echelon Technique for Recoverable Item Control (METRIC) 12
2.3.1 Introduction 12
2.3.2 Mathematical Assumption 13
2.3.3 Recoverable Item versus Consumable Item 15
2.4 Conclusion 16
Chapter 3 Problem Formulation 17
3.1 System Characteristic 17
3.2 Model Framework 18
3.2.1 Basic Assumption 18
3.2.2 Notation 18
3.3 METRIC Approach 20
3.3.1 Two-echelon Inventory System 20
3.3.2 Three-echelon Inventory System 21
3.4 Exact Solution 24
3.4.1 Two-echelon Inventory System 24
3.4.2 Three-echelon Inventory System 25
Chapter 4 Computational Experiments 29
4.1 Parameter Setting 29
4.2 Computational Experiments of Two-echelon Inventory System 29
4.2.1 Computational Experiments for Demand Intensity 29
4.2.2 Computational Experiments for Order-up-to Inventory Position 32
4.2.3 Computational Experiments for Lead Time 34
4.3 Computational Experiments of Three-echelon Inventory System 35
4.3.1 Computational Experiments for Demand Intensity 35
4.3.2 Computational Experiments for Order-up-to Inventory Position 41
4.3.3 Computational Experiments for Lead Time 42
4.4 Comparison 44
Chapter 5 Conclusions 45
Reference 47
Appendix 50
[1] 邵芊苹,「存貨協調及資訊分享對供應鏈整合之影響」,國立清華大學工業工程與工程管理學系碩士論文(2002)
[2] Abdul-Jalbar, B., J. Gutiérrez, J. Puerto, and J. Sicilia, “Policies for Inventory/Distribution Systems: The Effect of Centralization vs. Decentralization”, International Journal of Production Economics, 81-82, 281-293 (2003)
[3] Aichlymayr, M., “DC mart: Who Manages Inventory in a Value Chain?”, Transportation and Distribution, 41, 60-68 (2000)
[4] Allen, D. S., “Aggregate Dynamics of (S, s) Inventory Management”, International Journal of Production Economics, 59, 231-242 (1999)
[5] Andersson, J. and J. Marklund, “Decentralized Inventory Control in a Two-Level Distribution System”, European Journal of Operation Research, 127, 483-506 (2000)
[6] Andersson, J., and P. Melchiors, “A Two-Echelon Inventory Model with Lost Sales”, International Journal of Production Economics, 69, 307-315 (2001)
[7] Andersson, J., S. Axsäter, and J. Marklund, “Decentralized Multiechelon Inventory Control”, Production and Operations Management, 7, 4, 370-386 (1998)
[8] Axsäter, S., “ Simple solution procedures for a class of two-echelon inventory problems”, Operations Research, 38, 1, 64-69 (1990)
[9] Axsäter, S., “Continuous Review Policies for Multi-Level Inventory Systems with Stochastic Demand”, Handbooks in OR & MS, 4, 175-197 (1993)
[10] Axsäter, S., “Approximate Optimization of a Two-Level Distribution Inventory System”, International Journal of Production Economics, 81-82, 545-553 (2003)
[11] Cachon, G. P. and M. Fisher, “Supply Chain Inventory Management and Value of Shared Information”, Management Science, 46, 8, 1032-1048 (2000)
[12] Caplin, A. S., “The Variability of Aggregate Demand with (S, s) Inventory Policies”, Econometrica, 53, 6, 1395-1409 (1985)
[13] Certinkaya, S. and C. Y. Lee, “Stock Replenishment and Shipment Scheduling for Vendor-Managed Inventory System”, Management Science, 46, 2, 217-232 (2000)
[14] Chase, R. B. and N. J. Aquilano, Production and Operations Management ─ Manufacturing and Services, Seventh Ed., Richard D. Irwin, INC (1995)
[15] Chen, F., A. Federgruen, and Y. S. Zheng, “Coordination Mechanisms for a Distribution System with One Supplier and Multiple Retailers”, Management Science, 47, 5, 693-708 (2001)
[16] Chen, F. and Y. S. Zheng, “One-Warehouse Multiretailer Systems with Centralized Stock Information”, Operations Research, 45, 2, 275-287 (1997)
[17] Chopra, S. and P. Meindl, Supply Chain Management: Strategy, Planning, and Operation (2000)
[18] Clark, A. J. and H. Scarf, “Optimal policies for a multi-echelon inventory problem”, Management Science, 6, 475–490 (1960)
[19] Diks, E. B. and A. G. Kok, “Computational Results for the Control of a Divergent N-Echelon Inventory System”, International Journal of Production Economics, 59, 327-336 (1999)
[20] Forsberg, R., “Optimization of Order-up-to-S Policies for Two-Level Inventory Systems with Compound Poisson Demand”, European Journal of Operational Research, 81, 143-153 (1995)
[21] Ganeshan, R., “Managing Supply Chain Inventory: A Multiple Retailer, One Warehouse, Multiple Supplier Model”, International of Production Economics, 59, 341-354 (1999)
[22] Heijden, M. C. and T. Kok, “Estimating Stock Levels in Periodic Review Inventory Systems”, Operation Research Letters, 22, 179-182 (1998)
[23] Lee, H.L., V. Padmanabhan, and S. Whang, “Information Distortion in a Supply Chain: The Bullwhip Effect”, Management Science, 43, 546-558 (1997)
[24] Love, S. F., Inventory Control, McGraw-Hill, Inc. (1997)
[25] Matheus, P. and L. Gelders, “The (R, Q) Inventory Policy Subject to a Compound Poisson Demand Pattern”, International Journal of Production Economics, 68, 307-317 (2000)
[26] Naddor, E., Inventory System, John Wiley & Sons, Inc. (1966)
[27] Nozick, L. K. and M. A. Turnquist, “A Two-Echelon Inventory Allocation and Distribution Center Location Analysis”, Transportation Research Part E, 37, 425-441 (2001)
[28] Sherbrooke, C. C., “METRIC: A Multi-Echelon Technique for Recoverable Item Control”, Operations Research, 16, 122-141 (1968)
[29] Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi, Designing and Managing the Supply Chain: Concept, Strategy and Case Studies, Second Ed., McGraw-Hill/Irwin (2003)
[30] Svoronos, A. and P. Zipkin, “Estimating the Performance of Multi-Level Inventory Systems”, Operations Research, 36, 1, 57-72 (1988)
[31] Tyan, J. and H. M. Wee, “Vendor Managed Inventory: A Survey of the Taiwanese Grocery Industry”, Journal of Purchasing and Supply Management, 9, 11-18 (2003)
[32] Zomerdijk, L. G. and J. Vries, “An Organizational Perspective on Inventory Control: Theory and a case study”, International Journal of Production Economics, 81-82, 173-183 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top