跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林仁貴
論文名稱:以RDF規範為基礎之知識文件內容與結構解析技術
論文名稱(外文):A knowledge content and structure analysis technique using RDF representation
指導教授:侯建良侯建良引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:191
中文關鍵詞:斷詞知識本體結構RDF知識管理資訊擷取
外文關鍵詞:Document FragmentationOntologyRDFKnowledge ManagementInformation Retrieval
相關次數:
  • 被引用被引用:8
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:9
在現今知識經濟時代下,產業知識之擷取、儲存、管理與再利用為企業體保有產業競爭力之重要課題。然而,現今知識管理之相關技術多以文件知識的關鍵文字搜尋、版本控管、集中管理等重點進行發展,針對知識文件之內涵與結構解析之研究甚少,此乃造成知識真正有價值之資訊被忽略於知識管理課題之外,並使產業知識管理之有效性降低。此外,隨著網際網路技術進步,知識交換與分享於網路上進行已成為一種必然趨勢,如何有效解析並表達文件資訊使其易於閱讀與瞭解,成為企業進行知識管理另一項重要課題。因此,本研究乃根據網際網路下知識管理活動之特質,發展一套知識文件結構之解析模式,以文件中詞彙發生頻率及詞彙間關聯性為依歸,發展知識文件之詞彙截斷技術,以進行知識內容之剖析;並以詞彙截斷機制所得之斷詞組合為基礎,配合詞彙詞性分析模組,以決定斷詞組合之詞性結構。最後,再藉由RDF語法定義之知識本體結構解析,使知識文件產生具語意層次之結構,以有效表達知識文件之結構。除方法論與模式之發展外,本研究並完成一雛形系統開發與案例驗證,以確認方法論之可行性。本研究除了以既有文件庫為基礎,自動建置適用於各特定領域之詞頻庫與知識本體結構外,並融合詞彙發生頻率、詞彙關聯性與詞彙詞性等因子,使知識文件之表達結果具正確性與一致性,以便於知識文件之閱讀、交換與分享,進而提升產業知識管理效能與可再利用性,並強化企業知識管理之效度與深度。
In the knowledge-centric environment, enterprise knowledge acquisition, storage, management and reuse are the typical issues for enterprises to maintain their advantages in the global market. However, the present knowledge management techniques focus mainly on document search, version control and authorization. The contents and structure of documents that reveal the critical knowledge are rarely concerned. On the other hand, owing to the popularity of the Internet technology, more and more enterprise knowledge is exchanged and reused over Internet. In order to effectively explore the critical information in the free-from documents, a model for document structure analysis is developed in this research. In the proposed methodology, based on keyword frequency and correlation, document fragmentation and pattern analysis algorithms are utilized to analyze the document components and structure. Using the knowledge ontology defined based on the RDF syntax, the document components are then parsed into semantic structure. In addition to the document content analysis model, a prototype system is also developed and an IP management case is provided to verify the feasibility and effectiveness of the model. This research aims at developing an applicable approach to transform the free-form documents into structured semantic representation. As a result, the goal of automatic knowledge extraction and reused can be fulfilled and efficiency of enterprise knowledge management can be significantly improved.
目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 III


第一章、 研究背景 1
1.1 研究動機與目的 1
1.2 研究方法與步驟 3
1.3 研究定位 5
第二章、 文獻回顧 7
2.1知識內容剖析 7
2.1.1法則式 7
2.1.2統計式 8
2.1.3混合式 10
2.2知識表示法 11
2.2.1語意網 11
2.2.2框架式 13
2.2.3法則式 14
2.2.4敘述邏輯 15
2.2.5其他 16
2.3知識表示法之應用 17
2.4知識表示法之程式語言 20
第三章、 文件結構解析模式 24
3.1文件詞彙結構解析模組 24
3.1.1詞頻庫建置 25
3.1.2詞彙截斷模組 28
3.2詞彙詞性分析模組 37
3.2.1詞彙-詞性關係庫建立 38
3.2.2詞句結構判定機制 41
3.3 知識結構表達機制 44
3.3.1 RDF模式與語法 45
3.3.2知識單元庫與知識描述庫建置 47
3.3.3文件結構表達機制 53
第四章、 系統架構與規劃 56
4.1知識文件結構解析模式架構 56
4.2系統功能架構 57
4.3資料模式定義 60
4.4系統流程 62
4.4.1系統操作流程 62
4.4.2系統資料流程 70
4.5系統開發工具 71
第五章、 案例驗證與評估 73
5.1系統操作說明 73
5.1.1文件資訊匯入 73
5.1.1.1文件分享 73
5.1.1.2文件下載 83
5.1.2文件資料維護 95
5.2系統分析與評估 102
第六章、 結論與未來展望 118
參考文獻 121
附錄一 129
參考文獻
1. 王良志、貝子勝、黎偉權、黃麗卿,1991,「以剖析為導向的中文斷詞法」,電子發展月刊,第一六三期,第40-45頁。
2. 王志宏,1998,「機械組合設計之物件導向式專家系統核層」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。
3. 王聖中,1994,「法語式中文斷詞之研究」,碩士論文(指導教授:洪文斌),淡江大學資訊工程學系。
4. 白美滿,2003,「租稅規劃專家系統設計與建置之研究」,碩士論文(指導教授:黃華山),彰化師範大學會計學系在職進修專班。
5. 何文雄,1983,「中文斷詞的研究」,碩士論文(指導教授:謝清俊、梅廣),台灣科技大學工程技術研究所。
6. 吳政叡,1998,「資源描述架構在都柏林核心集的應用介紹」,國立中央圖書館台灣分館館刊,第五卷,第一期,第30-40頁。
7. 邱和源,1997,「機械系統型態設計之專家系統核層」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。
8. 林宜隆、鄢志豪、楊鍵樵,1994,「金融機構搶劫犯罪偵查專家系統建構與其應用之研究」,警專學報,第一卷,第七期,第382-411頁。
9. 林昭銘,2002,「使用特定領域的詞彙集與本體論回答簡單的歷史問題」,碩士論文(指導教授:蘇豐文),清華大學資訊工程學系。
10. 林銘裕,1993,「中文斷詞的研究」,碩士論文(指導教授:蘇克毅),清華大學電機工程學系。
11. 施東和、張俊盛、樑曉興,1991,「自然語言處理:中文之斷詞」,中正嶺學報,第十九卷,第二期,第69-73頁。
12. 侯建良、詹權恩,2003,「電子化文件庫之詞彙相關性解析模式」,2003電子商務與數位生活研討會,第38-47頁。
13. 段裘慶,1992,「軟體元件規格的知識表示法」,台北工專學報,第二十五卷,第二期,第137-154頁。
14. 唐大任,2002,「中文斷詞器之研究」,碩士論文(指導教授:王逸如),交通大學電信工程研究所。
15. 徐芷儀,1999,「兩文三語-語法系統比較」,台灣學生書局。
16. 高鼎翔、劉舜仁,2000,「日治時期臺鐵官舍建築平面構成法則之初探」,建築學報,第三十二卷,第65-86頁。
17. 韋耀華,2001,「應用框架觀念於供應鏈管理中知識表示及推導之研究」,碩士論文(指導教授:楊正甫),國防管理學院國防資訊研究所。
18. 張俊盛、陳志達、陳舜德,1991,「限制式滿足及機率最佳化的中文斷詞方法」,第四屆計算語言學研討會論文集,第147-165頁。
19. 梁效榕,2003,「以知識為基之機械設備錯誤診斷及維修諮詢系統」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。
20. 陳克健、陳正佳、林隆基,1986,「中文語句分析的研究—斷詞與構詞」,TR-86-004,中央研究院。
21. 陳舜德,1990,「商用英文書信產生程式」,碩士論文(指導教授:張俊盛),清華大學資訊科學系。
22. 陳何仁淵,1988,「規則型專家系統的設計與製作」,碩士論文(指導教授:吳憲明),淡江大學資訊科學研究所。
23. 陳稼興、謝佳倫、許芳誠,2000,「以遺傳演算法為基礎的中文斷詞研究」,資訊管理研究,第二卷,第二期,第27-44頁。
24. 曾琪淑,1991,「探討知識表達法在圖書分類系統中的應用」,美國資訊科學學會臺北學生分會會訊,第四期,第14-26頁。
25. 陳鍾誠、許聞廉,1998,「結合統計與規則的多層次中文斷詞系統」,第十一屆計算語言學研討會論文集,第63-72頁。
26. 黃宇斌,2000,「警察勤務執行機構設置調整分析專家系統雛型之研究」,碩士論文(指導教授:王本正),東海大學管理研究所。
27. 黃華山、蔡淑惠,1993,「以Prolog為基礎的知識庫系統支援物料存量管制決策之研究」,彰化師範大學學報,第四期,第573-589頁。
28. 彭載衍、張俊盛,1993,「中文辭彙岐義之研究—斷詞與詞性標示」,第六屆計算語言學研討會論文集,第173-193頁。
29. 葉肇鈞,2002,「透過語意網方式使用可分享的本體知識結構擷取歷史圖片」,碩士論文(指導教授:蘇豐文),清華大學資訊工程學系。
30. 楊正甫、應敏貞,2001,「管理資訊系統」,全華科技圖書股份有限公司。
31. 楊豐兆,1990,「在事物導向與法則基底混合式知識表示法環境下推論機之設計」,碩士論文(指導教授:何裕琨),成功大學電機工程研究所。
32. 趙鳴、雷一明,1995,「鋼結構構材電腦輔助設計系統之研究」,正修學報,第八卷,第27-34頁。
33. 蔡英聖,2001,「公共工程履約爭議處理資訊輔助系統之研究-以爭議調解為例」,碩士論文(指導教授:王明德),台灣大學土木工程學系。
34. 鄭魁香、蔣偉寧,1992,「使用物件導向程式語言建構一個可以應用在公路邊坡穩定分析的模糊專家系統的外殼」,高苑技術學報,第一卷,第53-64頁。
35. 賴芳敏,1993,「一個2-3階馬可夫語言模式於中文斷詞及詞性標示之應用」,碩士論文(指導教授:李錫堅),交通大學資訊工程研究所。
36. 儲永強、陳天鴻,1999,「柑橘病蟲害診斷與諮詢專家系統之建立」,農林學報,第四十八卷,第四期,第39-53頁。
37. 鍾榮富、洪敏雄、林秀春,1997,「華語文能力測驗編製-語法結構的考慮」,華文世界,第八十五期,第23-32頁。
38. 蘇育新,1994,「中文文句自動斷詞標詞類之研究與應用」,碩士論文(指導教授:陳信宏),交通大學電信工程研究所。
39. Bayer, T. A., 1993, “Understanding structured text documents by a model based document analysis system,” Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 448-453.
40. Brickley, D., Guha, R.V. and McBride B., 2003, "RDF Vocabulary Description Language 1.0: RDF Schema," http://www.w3.org/TR/rdf-schema/.
41. Broekstra, J., Klein, M., Decker, S., Fensel, D., Harmelen, F.-V. and Horrocks, I., 2002, “Enabling knowledge representation on the Web by extending RDF Schema,” Computer Networks, Vol. 39, pp. 609-634.
42. Chen, T., 1988, “The frame-based spatial knowledge representation,” IEEE Workshop on Languages for Automation: Symbiotic and Intelligent Robots, pp. 69-72.
43. Chudziak, J. and Piotrowski, M., 1995, “Semantic support for multimedia information system,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 3914-3919.
44. Ebenhoch, M.P., 2001, “Legal knowledge representation using the resource description framework (RDF),” Proceedings, The 12th International Workshop on Database and Expert Systems Applications, pp. 369-373.
45. Fan, C.-K. and Tsai, W.-H., 1988, “Automatic word identification in Chinese sentences by the relaxation technique, ” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 1, pp. 33-56.
46. Fan, T.-F., Hu, W.-C. and Liau, C.-J., 2001, “Decision logics for knowledge representation in data mining,” The 25th Annual International Conference on Computer Software and Applications, pp. 626-631.
47. Hiyama, T., 1989, “Application of rule-based stabilising controller to electrical power system,” Proceedings, IEE Generation, Transmission and Distribution, pp. 175-181.
48. Hsu, C.-K., Chang, J.-C., Chang, M., Jehng, J.-C. and Heh, J.S., 2002, “An approach for automatic learning and inference by knowledge map,” Proceedings, International Conference on Computers in Education, pp.957-958.
49. Hsu, W.-L. and Chen, Y.-S., 1999, “On phoneme-to-character conversion systems in Chinese processing,” Journal of the Chinese Institute Engineers, Vol. 22, No. 5, pp. 573-579.
50. Jenkins, C., Jackson, M., Burden, P., and Wallis, J., 1999, “Automatic RDF metadata generation for resource discovery,” Computer Networks, Vol. 31, pp. 1305-1320.
51. Klein, M., 2001, “XML, RDF, and relatives,” IEEE Intelligent Systems, Vol. 16, pp.26-28.
52. Kurzynski, M. W., Sas, J. and Puchala, E., 1992, “Rule-based medical diagnosis with learning: application to the diagnosis of acute renal failure in children,” Engineering in Medicine and Biology Society, Vol. 14, pp. 1259-1260.
53. Lam, S.-W. and Srihari, S.-N., 1991, “Frame-based knowledge representation for multi-domain document layout analysis,” IEEE International Conference on Systems, Man, and Cybernetics, Decision Aiding for Complex Systems, Conference Proceedings, Vol. 3, pp. 1859-1864.
54. Lambrix, P. and Padgham, L., 1998, “Using knowledge representation for agent world model,” Proceedings, International Conference on Multi Agent Systems, pp. 443-444.
55. Lank, E. and Blostein, D., 1997, “N-grams: a well-structured knowledge representation for recognition of graphical documents,” Proceedings of the Fourth International Conference on Document Analysis and Recognition, Vol.2, pp. 801-804.
56. Lassila, O. and Swick, R.-R., 1999, “Resource Description Framework(RDF) Model and Syntax Specification,” http://www.w3.org/TR/REC-rdf-syntax/.
57. Liu, L., Zhang, Z., Gao, Z., Yang, Q. and Liu, B., 1998, “Research on case representation of case-based reasoning approaches for electric power engineering design,” Proceedings, International Conference on Power System Technology, Vol. 2, pp. 968-970.
58. Liu, X., Li, X. and Zhang, L., 2000, “Knowledge graphs,” Chinese Journal of Engineering Mathematics, Vol. 17, pp. 33-40.
59. Lovrek, I., 1995, “Petri net based knowledge representation for intelligent networks,” Proceedings of the IEEE International Symposium on Intelligent Control, pp. 602-607.
60. Lu, Z.-Q., 1997, “Knowledge representation model for inference of English text-to-phoneme conversion,” IEEE International Conference on Intelligent Processing Systems, Vol. 2, pp. 1214-1216.
61. Manjula, D., Aghila, G. and Geetha, T. V., 2003, “Document knowledge representation using description logics for information extraction and querying,” Proceedings, ITCC International Conference on Information Technology, pp. 189-93.
62. Mitri, M., 1993, ”Combing semantic networks with multi-attribute utility models: An evaluative database indexing method,” Proceedings, Ninth Conference on Artificial Intelligence for Applications, pp. 462.
63. Ngai, C.H., Chan, P.W., Yau, E. and Lyu, M.R., 2002, “XVIP: an XML-based video information processing system,” Proceedings, The 26th Annual International on Computer Software and Applications Conference, pp. 173-178.
64. Nie, J.-Y., Hannan, M.-L., and Jin, W., 1995, “Combining Dictionary, Rule and Statistical Information in Segmentation of Chinese,” Computer Processing of Chinese and Oriental Languages, Vol. 9, No. 2, pp. 125-143.
65. Palacio, M.P., Sol, D. and Gonzalez, J., 2003, “Graph-based knowledge representation for GIS data,” Proceedings of the Fourth Mexican International Conference on Computer Science, pp. 117-124.
66. Papp, Z., 1991, “A framework for cooperative numeric and symbolic signal processing in real-time,” The 8th IEEE Conference on Instrumentation and Measurement Technology, pp.489-494.
67. Pan, H., Zhong L., and Yuan J.-L., 2002, “A study of dynamic knowledge representation based on neural networks,” Proceedings, International Conference on Machine Learning and Cybernetics, pp.126-128.
68. Rahman, S. and Moghram, I. S., 1989, “Application of a rule-based technique to weekly load forecast,” Proceedings, IEEE Energy and Information Technologies in the Southeast, Vol. 1, pp. 380-385.
69. Ruan, W., Buerkle, T. and Dudeck, J., 2000, “Object-oriented design for automated navigation of semantic networks inside a medical data dictionary,” Artificial Intelligence in Medicine, Vol. 18, No. 1, pp. 83-103.
70. Sarma, V.V.S. and Raju, S., 1991, “Multisensor data fusion and decision support for airborne target identification,” IEEE Transactions on Systems, Man and Cybernetics, Vol.21, pp. 1224-1230.
71. Sasakura, M., 2001, “ A visualization method for knowledge represented by general logic programs,” Proceedings, The Fifth International Conference on Information Visualisation, pp. 135-140.
72. Schmidt, J. and Putz, W., 1993, “Knowledge acquisition and representation for document structure recognition: The CAROL project,” Proceedings, Ninth Conference on Artificial Intelligence for Applications, pp. 177-181.
73. Schroder, C. and Neumann, B., 1996, “On the logics of image interpretation: model-construction in a formal knowledge-representation framework,” Proceedings, International Conference on Image Processing, Vol. 2, pp. 785-788.
74. Smolentsev, S. V., 2002, “The identification and self-organization problems in dynamic semantic networks,” IEEE International Conference on Artificial Intelligence Systems, pp. 35-39.
75. Sproat, R. and Shih, C., 1990, “A statistical method for finding word boundaries in Chinese text,” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 4, pp. 336-351.
76. Talluru, L.R. and Akgiray, V., 1988, “Knowledge representation for investment strategy selection,” Proceedings of the Twenty-First Annual Hawaii International Conference on Decision Support and Knowledge Based Systems Track, Vol. 3, pp. 189-196.
77. Tanaka, M., Aoyama, N., Sugiura, A. and Koseki, Y., 1995, “Integration of multiple knowledge representation for classification problems”, Artificial Intelligence in Engineering, Vol. 9, pp. 243-251.
78. Teoh, E.K. and Wong, C.Y., 1990, “A rule-based expert control for the SIR-3 robotic system,” The 16th Annual Conference of IEEE on Industrial Electronics Society, Vol. 2, pp. 1309-1313.
79. Tomosy, G., Dobrowiecki, T. P. and Roman, G., 1998, “Reasoning about signals and systems in complex measurement environment,” Proceedings of the 24th Annual Conference on Industrial Electronics Society, Vol. 4, pp. 2549-2554.
80. de Vos, A. and Rowbotham, C.T., 2001, “Knowledge representation for power system modelling,” The 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications, pp.50-56.
81. Venkateswar, V. and Chellappa, R., 1990, “A framework for interpretation of aerial images,” Proceedings, The 10th International Conference on Pattern Recognition, Vol.1, pp.204-206.
82. Vranes, S. and Stanojevic, M., 1994, “Prolog/Rex-a way to extend Prolog for better knowledge representation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 6, pp. 22-37.
83. Yeh, C.-L. and Lee H.-J., 1991, “Rule-base word identification for Mandarin Chinese sentences – A unification approach,” Computer Processing of Chinese and Oriental Languages, Vol. 5, No. 2, pp. 97-118.
84. Zarri, G.P., 1995, “The Narrative Knowledge Representation Language, a knowledge-based approach for representing the meaning of textual documents,” Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp. 545-548.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top