跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建勳
研究生(外文):Chien-Hsun Huang
論文名稱:逆向式評估投資組合屬性並建立投資組合最佳化模型
論文名稱(外文):Using Backward-type Portfolio Selection Methods to Construct Optimal Portfolio Evaluated Index and Model
指導教授:簡禎富簡禎富引用關係
指導教授(外文):Chien-Fu Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:59
中文關鍵詞:組合屬性逆向式投資組合選擇組合指標多屬性混合整數二階規劃多屬性二階規劃
外文關鍵詞:Portfolio attributesBackward-type portfolio selectionPortfolio indexMulti-criteria MIQP modelMulti-criteria QP model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:0
在很多領域上投資組合選擇的概念都被不斷地應用,隨著電腦資訊科技的蓬勃發展、作業研究與統計的方法廣泛地被使用。在財務投資的應用上,被常被應用的模型為Mean-Variance 模型,用來找出標物的投資部位。除此之外,很多數學模型是以評估公司的基本面與股價,先評斷股票的價值再來決定一組投資標的,這一類投資方法,我們把它歸類為前向式(Forward-type)組合選擇法。相反地,本研究使用逆向式(Backward-type)組合選擇法,以組合屬性為考量,將組合屬性分成獨立、相關、綜效組合屬性三類,並納入公司基本面的狀況來建立投資組合指標。並以隨機抽樣方式建立一組資料,以組合績效為標地,應用Partial R2 統計量來量化與評估投資人對當期組合屬性偏好的程度。最後再以建構好的投資組合指標為目標式,並依照不同的綜效屬性建立兩組不同的數學模型來找出最佳的投資組合部位。本研究以台灣股市八個產業中的六十四支股票為小樣本建構投資組合,經由比較發現建立的模型其長期績效的表現不差並發現綜效屬性的考量,對投資標的選擇有正向的影響。
Portfolio selection methods are developed in many fields. Many techniques and mathematical models are used to settle related problems based on mean-variance model developed in the stock markets. Many researches focus on evaluating items and formulate portfolio from good items and the methods belong to forward-type. On the contrary, this study aims to use “backward-type” portfolio selection method.
In the perspective of backward-type selection, this thesis identifies the portfolio attributes into three categories such as independent, interrelated and synergistic portfolio attributes. Other than the mean-variance model considers the risk as the selected criteria. The thesis used the performance (i.e. future return) what the investor emphasized as the target. By the statistic of partial R squares from stepwise-regression method toward performance, the investors’ attitude (i.e. relative importance) of each attribute is obtained periodically and the evaluation index is constructed. Based on the index, the study then constructed multi-criteria mixed-integer quadratic programming model and quadratic programming by different definition of synergistic attributes to obtain invested position of stocks in the portfolio. Finally, This study will have illustrations in Taiwan Stock market and find that the backward-type selection methods, company profitability and synergistic attribute including in the model will have good performance.
i
Table of Contents
Chapter 1 Introduction ...................................................................................................1
1.1 Background and Motivation ................................................................................1
1.2 Research Aims .....................................................................................................3
1.3 Overview of this study .........................................................................................3
Chapter 2 Literature Review..........................................................................................4
2.1 Related portfolio selection problem.....................................................................7
2.2 Characteristics of portfolio selection .................................................................11
2.3 Behavior of the stock market .............................................................................16
2.4 Portfolio selection model in stock market .........................................................21
Chapter 3 Constructing Portfolio Index and Modeling................................................24
3.1 Sample Data .......................................................................................................27
3.2 Identify Objectives, Portfolio Attributes and Formulate Evaluation index .......28
3.2.1 Identify Portfolio Attributes........................................................................28
3.2.2 Formulated Evaluation index......................................................................30
3.3 Estimating the item attributes ............................................................................31
3.4 Constructing the Evaluation index.....................................................................33
3.5 Mathematical model...........................................................................................37
Chapter 4 Numerical Study..........................................................................................42
4.1 Case1: Monthly data problem............................................................................42
4.1.1 Evaluate the preference...............................................................................42
4.1.2 Performance Evaluation..............................................................................46
4.2 Case2: Quarterly data problem ..........................................................................49
4.2.1 Performance Evaluation..............................................................................50
Chapter 5 Conclusion and Further Research ...............................................................53
Reference .....................................................................................................................55
ii
List of Figures
Figure2.1 The concept of forward and backward selecting methods ............................8
Figure2.2 Procedure of one-period portfolio selection ................................................17
Figure3.1 Research framework....................................................................................25
Figure3.2 Relationship among objective, portfolio and item attributes.......................28
Figure3.3 Procedures of estimating relative importance .............................................33
Figure4.1 The monthly performance of the proposed and traditional models.............47
Figure4.2 The Geometric return of the proposed and traditional models....................49
Figure4.3 The performance of proposed and traditional models.................................51
Figure4.4 The Geometric return of the proposed and traditional models....................52
List of Tables
Table2.1 Methods in the project selection and portfolio selection ..............................10
Table2.2 Typical methods of predicting stocks performance ......................................19
Table2.3 Extended portfolio selection method based the mean-variance model.........22
Table3.1 Dependent and independent variable ............................................................34
Table3.2 Formulated each portfolio attributes in objective for MIQP model..............38
Table3.3 Formulated each portfolio attributes in objective for QP model...................41
Table4.1 Summary of the Stepwise Regression for MIQP model in period 1.............43
Table4.2 Summary of the Stepwise Regression for MIQP model in period 2.............44
Table4.3 Summary of the Stepwise Regression for QP model in period 1..................45
Table4.4 Summary of the Stepwise Regression for QP model in period 2..................45
Table4.5 The performance of proposed and traditional models...................................47
Table4.6 The performance of the proposed and traditional models.............................50
Table4.7 Pair-t test of the performance with proposed and traditional model.............51
55
Reference
Archer, NP. and F. G. (1999),” An integrated framework for project portfolio
selection”, International Journal of Project Management, Vol. 17, No.4, pp.
207-216
Badri, M. A., D. Davis, and D. Davis. (2001), “A Comprehensive 0-1 Goal
Programming Model for Project Selection”, International Journal of Project
Management, 19, 243-252
Bertsimas, D., C. Darnell, and R. Soucy. (1999), “Portfolio Construction through
Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company”,
Interface, 29(1), 49-66
Campbell, R., R. Huisman, and K. Koedijk. (2001), “Optimal Portfolio Selection in a
Value-at-Risk Framework”, Journal of Banking & Finance, 25, 1789-1804Chang, F. R. (1996), ”Uncertainty and Investment in Healthy”, Journal of Health
Economics, 15, 369-376
Chien, C. F. (2002), “A Portfolio-evaluation Framework for Selecting R&D Project”,
R&D Management, 32, 359-368
Chow, G. (1995), “Portfolio Selection Based on Return, Risk and Relative
Performance”, Financial Analyst Journal, 51, 2, 54-60
Chow, K. V., and H. M. Hulburt. (2000), “Value, Size and Portfolio Efficiency”,
Journal of Portfolio Management, 26, 3, 78-89
56
Clement, R. T., and T. Reilly. (2001), Making Hard Decision: An Introduction to
Decision Analysis, 3rd ed., Duxbury, Thomson Learning Academic Resource
Center.
Elton, E. J., M. J. Gruber, S. J. Brown, W. N. Goetzmann. (2003), Modern Portfolio
Theory and Investment Analysis, 6th ed., John Wiley and Sons
Farquhar, P. H., and Rao, V. R. (1976), “A Balance Model for Evaluating Subsets of
Multi-attributed Items”, Management Science 22, 5, 528-539
Golabi, K., Kirkwood, C.W., and Sicherman, A. (1981), “Selecting a Portfolio of
Solar Energy Projects Using Multiattribute Preference Theory”, Management
Science 27, 2, 174-189.
Gold, S. C., and P. Lebowitz. (1999),“Computerized stock screening rules for
portfolio selection”, Financial Services Review, 8, 61–70
Hull, J. C. (2000), Options, Futures & Other Derivatives, 4th ed., Prentice-Hall,
London., pp.218-235
Ingersoll, J.E., Jr. (1987), Theory of Financial Decision Making, Rowmand and
Littlefield Publishers, Maryland.
Jacob, W. F., and Young, H. K. (2003), “In Search of Innovative Techniques to
Evaluate Pharmaceutical R&D Projects”, Technovation, 23, 291-296
Jiang, J. J., and G. Klein. (1999), “Project selection criteria by strategic orientation ”
Information & Management, 36, 63-75
Kim, G. C., and J. Emery. (2000), “An Application of Zero-One Goal Programming in
Project Selection and Resource Planning-a case study from the Woodward
Governor Company”, Computer & Operation Research, 27, 1389-1408
57
Kariya, T.(1993), Quantitative Methods for Portfolio Analysis: MTV Model
Approach,4th ed., Kluwer Academic, Boston
Keeney, R.L., and Raiffa, H. (1976), Decisions with Multiple Objectives: Preferences
and Value Tradeoffs, John Wiley & Sons, New York.
Klapka, J., and P. Pinos. (2002), “”Decision Support System for Multicriterial R&D
and Information Systems Projects Selection” European Journal of Operational
Research, 140, 434–446
Konno, H., and H. Yamazaki. (1991), “Mean-Absolute Deviation Portfolio
Optimization Model and Its Application to Tokyo Stock Market ”, Management
Science 37, 5, 519-531
Lai, T. Y. (1991), “Portfolio Selection with Skewness: A Multiple-Objective
Approach”, Review of Quantitative Finance and Accounting, 1, 293–305
Lee, S., and K. P. Chang. (1995), “Mean-Variance-Instability Portfolio Analysis: A
Case of Taiwan`s Stock Market”, Management Science, vol. 41, 1151-1157.
Lin, B. H., and S. K. Yeh. (2000), ” On the Distribution and Conditional
Heteroscedasticity in Taiwan stock prices” Journal of Multinational Financial
Management, 10, 367-395
Markowitz, H. (1952), “Portfolio Selection”, The Journal of Finance, Vol. VII, No. 1,
77-91
Markowitz, H. (1997), Portfolio Selection: Efficient Diversification of Investment,
2nd ed, John Wiley, New York.
McVean, J. R., and M. Projects, The Significance of Risk Definition on portfolio
Selection, Society of Petroleum Engineering, Dallas, Texas, October 2000.
58
Parra, M. A., A. B. Terol, and M. V. Rodriguez. Uria. (2001), “A Fuzzy Goal
Programming Approach to Portfolio Selection”, European Journal of
Operational Research, 133, 287–297
Pouge, G. A. (1970), ”An Extension of the Markowitz Portfolio Selection Model to
Include Variable Transactions’ Cost, Short Sales, Leverage Policies and Taxes”,
Journal of Finance, vol. 25, 5, 1005-1027
Ringuest, J. L., S. B. Graves, and R. H. Case. (2004), “Mean–Gini analysis in R&D
portfolio selection”, European Journal of Operational Research, 154, 157–169
Sharpe, W. F. (1995), “Risk, Market Sensitivity and Diversification”, Financial
Analyst Journal, 51, 1, 84-88
Suzuki, M. (1998), “PSR- an Efficient Stock-Selection Tool”, International Journal of
Forecasting, 14, 245-254
Talpaz, H., A. Harpaz, and J. B. Penson, Jr. (1983), “Risk and Spectral Instability in
Portfolio Analysis”, European Journal of Operation Research, 14, 262-269
Yu, B., E. S. Growney, D. K. Hansen., M. E. Johnson., K. N. An. (1996),
“Abduction/Adduction Moment at the Knee in Stair Climbing and Level
Walking”, Gait and Posture, 4, 167-208
Zaric, G. S., and Margaret, L. B. (2001), “Optimal Investment in a Portfolio of HIV
Prevention Programs”, Med Decision making, vol. 11, 391-408
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top