跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永志
研究生(外文):Yung-Chih Chen
論文名稱:PTFE-SiO2有機無機複合材料製備及性質之研究
論文名稱(外文):Preparation and properties of PTFE-SiO2 organic-inorganic composite
指導教授:李育德李育德引用關係
指導教授(外文):Yu-Der Lee
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:177
中文關鍵詞:聚四氟乙烯二氧化矽複合材料填充材料含量填充材料尺寸大小混成材料
外文關鍵詞:polytetrafluoroethylene
相關次數:
  • 被引用被引用:8
  • 點閱點閱:976
  • 評分評分:
  • 下載下載:205
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
有鑑於PTFE/SiO2複合材料為高頻或微波基板所使用之理想材料,其商業用途極為廣泛,而其性質又因組成及製作方法不同而有許多的變化,本研究目的即在於利用不同組成與製作方法製備出微米級(Micro)及奈米級(Nano)PTFE/SiO2複合材料,探討其介電性質、熱性質、機械性質及形態上的變化,以作為製作材料及調控基板性質的依據,希望能進一步了解填充材在複合材料中伴演的角色,並能有助於PTFE/SiO2複合材料未來之應用。
本研究分為二系統進行,系統一以微米級SiO2填充材補強PTFE基材,系統二則利用溶膠-凝膠(Sol-gel)製程技術製作出PTFE/SiO2奈米級有機無機基板材料,除探討溶膠-凝膠組成中不同觸媒、溶劑含量與水量等成份對溶膠-凝膠材料性質之影響外,更針對表面改質處理與SiO2含量對PTFE/SiO2性質之影響性作探討。
系統一以物理分散法製備PTFE/SiO2微米級複合材料並探討不同的Phenyltrimethoxysilane偶合劑含量(0-3wt%)對PTFE/SiO2材料的性質及形態上的影響,實驗數據分析後顯示:隨著偶合劑含量的增加,拉伸強度及熱膨脹係數皆增加,而吸水率減少;另外,在SiO2填充材料含量與尺寸大小對PTFE/SiO2 複合材料之性質影響研究方面,以兩種不同大小(5�慆 or 25�慆 SiO2)及0-60wt% SiO2添加含量,調配製作出各種PTFE/SiO2板材後進行各種物性測試,實驗數據分析後顯示:兩種不同大小的SiO2在含量對各種物性的影響皆有相同的趨勢,即隨著SiO2含量的增加,拉伸強度及熱膨脹係數皆減少,而拉伸剛性、吸水率及介電特性皆增加,且因為較小的SiO2填充材料具有較多之表面積,所以,添加較小的SiO2所得的PTFE/SiO2複合材料,有較高之吸水率及介電損失;再者,因PTFE基材化學反應性差,與SiO2填充物之間的作用力相當弱,是造成較低的拉伸強度及耐熱性無法提升的原因,而此現象可由SEM電子顯微鏡觀察拉伸破壞後的試片得以佐證;除此之外,本研究也將實驗數據與文獻推算兩相複合材料的理論計算值作相互比對,比對後發現介電常數與熱膨脹係數之實驗數據與理論計算值相當接近,而且Nicolais-Narkis修正計算式能有效的估算出PTFE/SiO2複合材料的拉伸強度。
系統二以溶膠-凝膠法製備PTFE/SiO2奈米級複合材料並探討不同的siliylation agent對PTFE/SiO2複合材料的介電性質、熱性質、機械性質及形態上的影響。實驗上,以溶膠-凝膠法製備50wt% PTFE/SiO2混成材料及以雙滾輪碾壓機製作成板材,採用Trimethylchlorosilane (TMCS)及Hexamethydisilazane (HMDS)為本研究之改質劑(silylation agents),由實驗結果發現:經由改質後之PTFE/SiO2混成材料具有較低的吸水率及介電損失性質,可由IR及NMR分析發現SiO2表面之-OH基已被取代成-CH3,除此之外,已改質之PTFE/SiO2混成材料具有高的孔隙度(53.7%)、奈米級之孔洞(10-40nm)及奈米膠粒(粒徑20-50nm)等特點,使得PTFE/SiO2混成材料具有超低介電性質(Dk=1.9 & Df=0.0021)、小之熱膨脹係數(66.5 ppm/℃)、高的拉伸剛性(141 Mpa)、耐熱性(Td=612℃)及疏水性(接觸角(��)=114�a);在SiO2填充材料含量(0–60wt%)對PTFE/SiO2 複合材料之性質影響研究方面,由實驗數據分析後顯示:SiO2含量對物性的影響,與上述微米級SiO2對PTFE/SiO2基板材料的影響,有相同的趨勢,即隨著SiO2含量的增加,拉伸強度及熱膨脹係數皆減少,而拉伸剛性、吸水率及介電性質皆增加。
目  錄

摘要 I
謝誌 III
目錄 i
表目錄 iii
圖目錄 v
一、緒論 1
1-1 前言 1
1-2 印刷電路板的市場趨勢 1
1-3 高頻印刷電路板板材性質要求 3
1-4 印刷電路板板材常用之樹脂 9
1-5 有機-無機奈米複合材料 15
1-6 溶膠-凝膠法 17
二、理論與文獻回顧 21
2-1 PTFE材料及乳液特性 21
2-2 系統一微米級PTFE/SiO2複合材料(composite) 24
2-2-1 SiO2含量及粒徑大小之影響 25
2-2-2偶合劑種類之影響 27
2-2-3偶合劑含量之影響 28
2-3 系統二PTFE/SiO2奈米複合材料(nanocomposite) 28
2-3-1 溶膠-凝膠製備PTFE/SiO2材料 28
2-3-2 溶膠-凝膠法理論 30
2-3-3 SiO2表面的化學改質 46
2-3-4 以溶膠-凝膠法製備的有機無機混成材料 49
2-3-5 以溶膠-凝膠法製備的有機無機混成材料相關研究 52
三、研究動機及目的 57
四、研究方法與步驟 58
4-1 實驗架構 58
4-2 實驗用藥品 59
4-3 實驗流程 61
4-4 樣品製作 63
4-5 實驗儀器及測試方法 66
五、結果與討論 70
5-1 微米級PTFE/SiO2複合材料製備 70
5-2 偶合劑含量對微米級PTFE/SiO2複合材料之性質影響性研究 72
5-3 SiO2填充材料含量與尺寸大小對微米級PTFE/SiO2複合材料之性質影響性研究 83
5-4溶膠-凝膠法製備PTFE/SiO2混成材料 103
5-5 PTFE/SiO2混成材料化學表面改質研究 127
5-6 TEOS含量對PTFE/SiO2混成材料之性質影響性研究 144
六、結論 157
七、參考文獻 163
八、附錄 174


表目錄
表1-1. 基板板材的各種需求 8
表1-2. 各類高頻基板材料之介電性質與熱膨脹係數 9
表1-3. 有機高分子與無機陶瓷性質比較 16
表2-1. Characteristics of PTFE suspension 22
表2-2. Gelation time and pH for six catalysts 36
表2-3. 不同r(H2O/TEOS莫耳比)所得到不同的膠體結構 43
表2-4. 利用溶膠-凝膠反應製備有機-無機混成複材的研究與產品分類表 ………………………………………………………… 55
表2-5. 利用溶膠-凝膠反應製備有機-無機混成複材的研究及發展機構 56
表5-1. Composition and content of SiO2 in PTFE composites 74
表5-2. The effect of silane on the properties of 60wt% SiO2-reinforced PTFE composites. 74
表5-3. Comparison between experimental results and theoretical values calculated by rule of mixture for 60wt% SiO2-reinforced PTFE composites. 82
表5-4. Weight fraction of SiO2 in composites and decomposition temperature of PTFE/SiO2 composites. 85
表5-5. Material Properties of PTFE and SiO2 85
表5-6. Summarized data obtained via the DSC measurements for pure PTFE and PTFE/SiO2 composites 89
表5-7. Models for predicting the tensile strength of filled polymer. 93
表5-8. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different HF content. 110
表5-9. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different ethanol content. 115
表 5-10. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different water content. 120
表5-11. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different TEOS content. 125
表5-12. The effect of different silylation agents and reaction times on the dielectric loss (Df) properties of PTFE/SiO2 hybrids. 129
表5-13. Weight fraction of SiO2 in hybrids and decomposition temperature of dried pure PTFE, SiO2 and PTFE/SiO2 hybrids. 131
表5-14. Provisional assignment of IR reflectance peaks 135
表5-15. Summarized vibrations mode of IR peaks in the unmodified and modified PTFE/SiO2 hybrids 135
表5-16. 29Si MAS NMR deconvolution results 137
表5-17. The measured density, surface area, average pore size, pore volume and porosity properties of pure PTFE and PTFE/SiO2 hybrids. 139
表5-18. Effect of HMDS/TMCS silylation agent on the various properties of PTFE/SiO2 hybrids. 143
表5-19. The measured density, surface area, average pore size, pore volume and porosity properties of different filler content of PTFE/SiO2 hybrids. 147
表 5-20. Summarized data obtained using the DSC measurements for pure PTFE and PTFE/SiO2 hybrids 152
表 5-21. The effect of filler contents and surface modification on the various properties of PTFE/SiO2 hybrids. 155


圖目錄
圖1-1.日本通訊發展傳送速度的評估 2
圖1-2.各類高頻基板材料之性能、加工溫度與成本挑戰關係圖 10
圖1-3.利用溶膠─凝膠反應製備奈米級(Nano)型態的複合材料 17
圖1-4.凝膠化過程 18
圖2-1.SEM of primary particles of PTFE (D60A) 22
圖2-2.Viscosity behavior of PTFE dispersion as a function of Temperature.. 24
圖2-3. Water equilibrium reaction at surface of fumed silica 26
圖2-4. Concept of a Polymer/Siloxane/Glass Interphase 27
圖2-5. PTFE/SiO2塊材的SEM (A) Acid-catalyzed;
(B) Base-catalyzed 30
圖2-6.水解與聚合反應對膠體結構的影響 34
圖2-7. pH值與顆粒大小關係 34
圖2-8. pH值對silica-water系統所產生之膠體的凝膠時間影響 39
圖2-9.不同的酸性觸媒對凝膠時間的影響60 41
圖2-10. Density of silica aerogel vs. Ethanol/TEOS molar ratio58 42
圖2-11.二氧化矽表面的矽氫氧基型態73 47
圖2-12.二氧化矽之表面去水及去氧基反應機構73 47
圖2-13. Si-OH表面改質反應機構 49
圖2-14.線性有機高分子崁入無機高分子的示意圖84 50
圖4-1.系統一微米級PTFE/SiO2基板的製作流程圖 62
圖4-2.系統二奈米級PTFE/SiO2基板的製作流程圖 63
圖4-3. Sintering thermal profile of the PTFE/SiO2 hybrids. 66
圖5-1. DSC curve of the 60wt% SiO2-reinforced PTFE composites. 76
圖5-2. Thermogravimetric profile of the 60wt% SiO2-reinforced PTFE composites 76
圖5-3.Tensile strength versus sintering time for the 60wt% SiO2-reinforced PTFE composites. 78
圖5-4. Tensile strength versus concentration of phenyltrimethroxy silane for the 60wt% SiO2-reinforced PTFE composites. 78
圖5-5. Cross-section SEM microghraphs of the PTFE/silica composites and pure PTFE. (a) PTFE containing 60wt% untreated SiO2, (b) PTFE containing 60wt% SiO2 treated with 3% coupling agent (c) PTFE containing 60wt% untreated SiO2, and (d) pure PTFE 80
圖5-6. Water absorption versus concentration of phenyltrimethroxy-silane for the 60wt% SiO2-reinforced PTFE composites. 83
圖5-7. Heating and cooling DSC curves of the 60wt% SiO2 (25 �慆)-reinforced PTFE composite. 87
圖5-8. Tensile modulus vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 90
圖5-9. Tensile strength vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 91
圖5-10. Typical tensile strength-concentration curves for filled polymers showing upper and lower bound responses 102. 92
圖5-11. Comparison between calculated and experimental results of tensile strength. 94
圖5-12. Cross-section SEM microghraphs of the pure PTFE and PTFE/silica composites with different filler size. (A) Blank pure PTFE (Mag.=x500), (B) PTFE containing 60wt% 25�慆 SiO2 treated with 3% coupling agent (Mag.=x1500); and (C) PTFE containing 60wt% 5�慆 SiO2 treated with 3% coupling agent (Mag.=x1500). 96
圖5-13. SEM microghraphs of tensile fractured cross-section for the PTFE/SiO2 composites. (A) PTFE containing 60wt% 25�慆 SiO2 untreated (Mag.=x200); (B) PTFE containing 60wt% 25�慆 SiO2 treated with 3% coupling agent (Mag.=x200); (C) PTFE containing 60wt% 25 �慆 SiO2 treated with 3% coupling agent (Mag.=x1500); (D) PTFE containing 60wt% 5�慆 SiO2 treated with 3wt% coupling agent (Mag.=x1500); (E) PTFE containing 60wt% 5�慆 SiO2 treated with 3wt% coupling agent (Mag. = x1500). 96
圖5-14. Water absorption vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 98
圖5-15. Dielectric constant (Dk) vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 100
圖5-16. Dielectric loss (Df) vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 100
圖5-17. Comparison between calculated and experimental results of Dk. The curve shown is calculated by eq 5-1. 101
圖5-18. Comparison between calculated and experimental results of Df. The curve shown is calculated by eq 5-2. 101
圖5-19. CTEz vs. various SiO2 filler content for 25�慆 SiO2 (▲), 5�慆 SiO2 (●). 103
圖5-20. Comparison between calculated and experimental results of CTEz. The curve shown is calculated by eq 5-10. 103
圖5-21. PTFE Coagulation time與TEOS Gelation time 比較圖 106
圖5-22.不同HF/TEOS molar ratio之反應時間與樣品溫度關係圖 107
圖5-24. PTFE與PTFE/SiO2 在氮氣環境下之TGA比較圖 109
圖5-25.利用高斯方程式Fitting 29Si NMR圖譜126 112
圖5-26.不同HF/TEOS molar ratio之29Si NMR圖譜 113
圖5-27.不同HF/TEOS molar ratio對交聯密度的影響 113
圖5-28.不同m(Ethanol/TEOS molar ratio)對Gelation time的影響 115
圖5-29不同m(Ethanol/TEOS molar ratio)之29Si NMR圖譜 118
圖5-30不同m(Ethanol/TEOS molar ratio)對交聯密度的影響 118
圖5-31不同r(Water/TEOS molar ratio)對Gelation time的影響 119
圖5-32不同r(Water/TEOS molar ratio)之29Si NMR圖譜 122
圖5-33不同r(Water/TEOS molar ratio)對交聯密度的影響 123
圖5-34.不同k(TEOS/PTFE Weight ratio)對Gelation time的影響 123
圖5-35.不同k(TEOS/PTFE Weight ratio)在氮氣環境下之TGA
比較圖 125
圖5-36.不同k(TEOS/PTFE Weight ratio)對交聯密度的影響 127
圖5-37.不同k(TEOS/PTFE Weight ratio)之29Si NMR圖譜 127
圖5-38.Dielectric loss (Df) versus sintering time for unmodified 50wt% SiO2-reinforced PTFE hybrid. 128
圖5-39. Thermogravimetric curve for (a) pure TEOS derived silica; (b) unmodified PTFE/SiO2 containing 50wt% SiO2; (c) modified PTFE/SiO2 containing 50wt% SiO2; (d) pure PTFE. 129
圖5-40. DSC curve of sintered PTFE/SiO2 hybrid (a) modified; (b) unmodified. 133
圖5-41. IR spectra of sintered PTFE/SiO2 hybrid (a) modified; (b) unmodified. 134
圖5-42. 29Si MAS NMR spectra of PTFE/SiO2 hybrids, (A) modified; (B) unmodified. 137
圖5-43. Pore size distribution in modified and unmodified PTFE/SiO2 hybrids. Lines are drawn as guides for the eye. 139
圖5-44. Cross-sectional SEM images of pure PTFE, SiO2 and PTFE/SiO2 hybrids. (A) Blank pure PTFE (Mag.=x500), (B) pure SiO2 by sol-gel synthesis (Mag.=x30,000) and (C) PTFE containing 50wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=x60,000). Small black arrows in (B) and (C) indicate the nano-size SiO2 filler. (D) PTFE containing 50wt% equivalently SiO2 powder overly heat-treated at 900℃ for 4 h (Mag.= x10,000). 141
圖5-45. TEM images (A) and EDX spectrum (B) of the modified PTFE/SiO2 hybrids. Dark regions represent SiO2 particles. 142
圖5-46. Effect of SiO2 filler content on pore size distribution of PTFE/silica hybrids. Lines are draw as guides for the eye. 146
圖5-47. Cross-sectional SEM images of pure SiO2 and PTFE/SiO2 hybrids. (A) Blank pure SiO2 by sol-gel synthesis (Mag.=×30,000), (B) PTFE containing 30wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=×60,000), and (C) PTFE containing 50wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=×60,000)…. 148
圖5-48. Typical heating and cooling DSC curve of SiO2-reinforced PTFE/SiO2 hybrids. 149
圖5-49. Heating DSC curves of pure PTFE and PTFE/SiO2 hybrids. 151
圖5-50. Cooling DSC curves of pure PTFE and PTFE/SiO2 hybrids. 151
圖5-51. Tensile modulus vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 153
圖5-52. Tensile strength vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 154
圖 5-53. Dielectric loss (Df) vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 156
圖 5-54. X-axis CTE vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 157
七、參考文獻
1. 黃進華, 電子與材料, Vol. 3, 108-113, 1999.
2. 白蓉生, 電路板資訊雜誌, No. 89, 120-134, 1995.
3. 高繼祖, 電子與材料, Vol. 4, 75-83, 1999.
4. Fumiaki Baba, ”Plastic materials for microwave applications “ 1999,Chapter 1, pp 3~24.
5. Sanville Rober J. et al., U.S. Patent 5,670,250, 1995.
6. Smith, J. R. L.; Lee, S. B.; Komori, H.; Arai, K. Fluid Phase Equilibria 1998, 144, 315-322.
7. Arthur, D. J.; Swei, G. S. U.S. Patent 5,149,590, 1992.
8. Bob Daigle, Electronic Components and Technology Conference, 1996, pp 354-357.
9. Farquhar, D. S.; Seman, A.; Poliks, M. D., IEEE transactions advanced packaging 1999, 22, 153-159,
10. 白蓉生,電路板資訊雜誌, No. 52, 72-92, 1991.
11. Akutsu, F.; Inoki, M.; Daicho, N.; Kasashima, Y.; Shiraishi, N.; Marushima, K. J Appl Polym Sci 1998, 69, 1737-1741.
12. 電路板資訊雜誌資料室, 電路板資訊雜誌, No. 52, 62-71,1991
13. M. W. Jawitz, Printed Circuit Board Materials Handbook, 1997.
14. Musto, P.; Martuscelli, E.; Ragosta, G.; Russo, P.; Scarinzi, G. J. Appl Polym Sci 1998, 69, 1029-1042.
15. Inagaki, N.; Tasaka, S.; Ohmori, H.; Mibu, S. J Adhesion Sci Technol 1996, 10(3), 243-256.
16. Buchwalter, L. P.; Saraf, R. J Adhesion Sci Technol 1993, 7 (9), 925-940.
17. Rozovskis, G.; Vinkevicius, J.; J. Jaciauskiene J Adhesion Sci Technol 1996, 10, 399-406.
18. Chen, H. L.; Ho, S. H.; Wang, T. H.; Chen, K. M.; Pan, J. P.; Liang, S. M.; Hung, A. J Appl Polym Sci 1994, 51, 1647-1652.
19. Farquhar, D. S.; Seman, A.; Poliks, M. D. Proceedings of the 1998 48th Electronic Components and Technology Conference, pp 800-806.
20. 陳文章; 劉韋志, 化工, 第46卷第5期, 56-62, 1999.
21. Petrović, Z. S.; Javni, I.; Waddon, A.; Banhegyi, G. J Appl Polym Sci 2000, 76, 133-151.
22. Okada, H. Nanomaterials: Nano-particles, Nano-composites and their Applications; Kansai Research Institute (KRI): Report No.9 of Phase XIV, Mar. 2003; Chapter 5, pp 251-313.
23. Kickelbick, G. Prog Polym Sci 2003, 28, 83-114.
24. Jana, S. C.; Jain, S. Polymer 2001, 42, 6897-6905.
25. Sshmidt, D.; Shah, D.; Giannelis, E. P., Current Opin Solid State and Mater Sci 2002, 6, 205-212.
26. Collinson, M. M. Trend in Analytical Chemistry 2002, 21(1), 30-38.
27. Seishiro Nakamura: Organic-Inorganic Polymer Hybrids (Update-I); Kansai Research Institute (KRI): Report No.4 of Phase VIII, Nov. 1996; Chapter 1, pp 1-9.
28. Kim, M. A.; Lee, W. Y. Analy Chim Acta 2003, 142, 143-150.
29. Young, S. K.; Jarret, W. L.; Mauritz, K. A. Polymer 2002, 43, 2311-2320.
30. Doyle, W. F.; Fabes B. D.; Root J. C.; Simmons K. D., Chiang Y. M.; Uhlamann D. R. In: Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich D. R., Ed.; Wiley-Interscience: New York, 1988; Chapter 78, pp 953-962.
31. Doyle, W. F. In: Uhlamann D. R. In: Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich D. R., Ed.; Wiley-Interscience: New York, 1988; Chapter 61, pp 795-805.
32. Michalczyk, M. J.; Sharp, K. G.; Stewart, C. W. U.S. Pat. 5,726,247, 1998.
33. Sharp, K. G. Adv Mater 1998, 10, 1243-1247.
34. Brinker, C. J.; Scherer, G. W. Sol-Gel Science: the physics and chemistry of sol-gel processing, 2nd Ed.; Academic Press: San Diego, 1990.
35. Speck, K. R.; Hu, H. D.; Sherwin, M. E.; Potember, R. S. Thin Solid Films 1988, 165(1), 317-322.
36. Teseng, T. Y.; Muang, J.; Lin, J. G. J Mater Sci 1989, 24, 2735-2738.
37. 謝志文, “以溶膠-凝膠法製備(A1-B)或(Ti-B)雙氧化物薄膜及粉體”, 國立中央大學化工所博士論文(1992), pp. 19-45
38. Scheirs, J. Modern Fluoropolymers: high performance polymers for diverse applications, John Wiley & Sons: Chichester, 1997; pp 54.
39. Ebnesajjad, S. Non-melt Processible Fluoroplastics: / the definitive user's guide and databook, Plastics Design Library: New York; 2000, pp 19-45.
40. Arthur, D. J.; Horn III, A. F. U.S. Patent 5,061,548, 1991.
41. Fields, J. T.; Garton, A. Polym Composites 1996, 17, 242-250.
42. Arthur, D. J.; Mosko, J. C.; Jackson C. S.; Traut G. R. U.S. Patent 4,849,284, 1989.
43. Horn III, A. F.; Danielson, C. U.S. Patent 5,358,775, 1994.
44. Arthur, D. J.; Swei, G. S. U.S. Patent 5,024,871, 1991.
45. Iler, R. K. The Chemistry of Silica- Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley-Interscience: New York, 1988; Chapter 1, pp 17.
46. Nakamura, Y.; Yamaguchi, M.; Iko, K.; Okubo, M.; Matsumoto, T. Polymer 1990, 31(11), 2006-2070.
47. Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T. J Appl Polym Sci 1992, 45(7), 1281-1289.
48. Han, C. D.; Weghe, T. V. D.; Shete, P.; Haw, J. R. Polym Eng Sci, 1981, 21(4), 196 -204.
49. Wong, C. P.; Bollampally, R. S. J. Appl Polym Sci 1999, 74(14), 3396-3403.
50. DiBenedetto, A. T. Mater Sci and Engine 2001, A 302(1), 74-82.
51. David J. Arthur et al. U.S. Patent 5,198,295, 1993.
52. David J. Arthur et al. U.S. Patent 5,281,476, 1994.
53. David J. Arthur et al. U.S. Patent 5,194,326, 1993.
54. David J. Arthur et al. U.S. Patent 5,384,181, 1995.
55. Elion, R. A.; Leobel, A.; Eirich, F. J Am Chem Soc 1950, 72, 5705-5710.
56. Pope, E. J. A.; Mackenzie, J. D. J Non-Cryst Solids 1986, 81, 185-198.
57. Marshall, D. B; Cole, C. L.; Norman A. D. J Chromatogr Sci 1987, 25, 262-266.
58. Yoldas, B. E. J Non-cryst Soilds 1986, 83(3), 375-390.
59. Iler, R. K. The Chemistry of Silica; Wiley-Interscience: New York, 1988; Chapter 6, pp 622-714.
60. Coltrain, B. K.; Melpolder, S. M.; Salva, J. M. Proceeding of the 11th Int'l. Conference on Ultrastructure Processing of Ceramic, Glass and Composites 1989 Feb., pp 19-24.
61. Venkateswara Rao, A.; Pajonk, G. M.; Parvathy, N. N. J Materials Science 1994, 29, 1807-1817.
62. Buckely, A. M.; Greenblatt, M. J Non-Cryst. Solids 1992, 143, 1-13.
63. Katagiri, T.; Maekawa, T. J Non-Cryst Solids 1991, 134, 183-190.
64. Wagh, P. B.; Rao, A. V.; Haranath, D. Materials of Chemistry and Physics 1998, 53, 41-47.
65. Yoldas, B. E. J Mater Sci 1986, 21(3), 1087-1092.
66. Yoldas, B. E. J Am Ceram Soc 1982, 65(8), 387-393.
67. S. Sakka, Formation of Glass and Amorphous Oxide fibers from Solution, Better Ceramic Throgh Chemistry 1984, pp 81.
68. Colby, M. W.; Osaka, A.; Mackenzie, J. D. J Non-Cryst Solids, 1985, 82(1-3), 37-41.
69. Ro, J. C.; Chung, I. J. J. Non-Cryst Solids 1991, 130(1), 8-17.
70. Aso, Y. S.; Okano, S.; Sakaino T. J Mater Sci 1979, 14, 607-611.
71. Nogami, M.; Moriya, Y. J. Non-Cryst Solids 1980, 37, 191-201.
72. Gadalla, A. M.; Yun, S. J. J. Non-Cryst Soilds 1992, 143(2-3), 121-132.
73. 卓恩宗, “中孔洞二氧化矽低介電薄膜材料在積體電路製程上的應用與研究”, 國立清華大學碩士論文, 2001
74. Hong, J. K.; Yang, H. S., Jo, M. H.; Park, H. H.; Choi, S. Y. Thin Solid Films 1997, 308-309, 495-500.
75. Shoubin, Z.; Xinsheng, W.; Yoshimura, N. Proceedings of 1998 Asian International Conference on Dielectrics and Electrical Insulation and 30th Symposium on Electrical Insulating Material, Toyohashi, Japan, Sept. 27-30, 1998, pp 43-46.
76. Vansant, E. F.; Voort P. V. D.; Vrancken K. C. Characterization and Chemical Modification of the Silica Surface. Elsevier: Amsterdam, 1995; Chapter 9, pp 193-297.
77. Lochmuller, C. H.; Marshall D. B. Analy Chim Acta 1982, 142, 63-72.
78. Akapo, S. O.; Dimandja J. M. D., Matyska, M. T.; Pesek, J. J Anal Chem 1996, 68, 1954-1959.
79. Katz; Davis, M. E. Nature 2000, 403, 286-289.
80. Pesek, J. J.; Matyska M. T.; Yu, R. J. J of Chromatography A 2002, 947, 195-203.
81. Nouvel, C.; Ydens, I.; Degée P.; Dubois P.; Dellacherie E.; Six, J. Polymer 2002, 43, 1735-1743.
82. Gun’ko, V. M.; Vedamuthu, M. S.; Henderson, G. L.; Blitz, J. P. J Colloid Interface Sci 2000, 228, 157-170.
83. Qin, H. H.; Dong, J. H.; Qin, K. Y.; Wei, Y. J Polym Sci Part A: Polym Chem 2000, 38, 321-328.
84. Calvert, P. Nature 1991, 353, 501-502.
85. Ellsworth, M. W.; Novak, B. M.; J Am Chem Soc 1991, 113, 2756-2758.
86. Chujo, Y.; Saegusa, T. In: Macromolecules: Synthesis, Order and Advanced Properties, Armistead, K. A.; Chujo, Y.; Corradini, P.; Fischer, M.; Kausch, H. H.; Kennedy, J. P. Ed., Springer Verlag, Advances in Polymer Science, No 100, 1992, pp 11.
87. Morikawa, A. et al., J Polymer 1992, 24(1), 107-113.
88. Klein, L. C. Annu Rev Material Sci 1993, 23, 437-501.
89. Brunauer, S.; Emmett, P. H.; Teller, E. J Am Chem Soc 1938, 60, 309-319.
90. Barret, E. P.; Joyner, L. G.; Halenda, P. H., J Am Chem Soc 1951, 73, 373-380.
91. Endo, M.; Yamada, K.; Tadano, K.; Nishino, Y.; Yano, S. Macromol. Rapid Commun 2000, 21(7), 396-400.
92. Wang X. Q.; Han, J. C.; Du, S.Y.; Wang, D. F. J. Reinforced Plastics and Composites 1998, 17(17), 1496-1506.
93. George, S.; Varughese, K. T.; Thomas, S. J Appl Polym Sci 1999, 73, 255-270.
94. Beecroft, L. L.; Johnen, N. A.; Ober, C. K. Polym for Adv Techn 1997, 8, 289-296.
95. Cho, J. W.; Sul, K. I. Polymer 2001, 42(2), 727-736.
96. Wang, X. Q.; Chen, D. R.; Han J.C.; Du, S. Y. J Appl Polym Sci 2001, 83(5), 990-996.
97. Ferry, L.; Vigier, G.; Alexander-Katz, R.; Garapon, C. J Polym Sci, Part B: Polym Phys, 1998, 36(12), 2057-2067.
98. Liang, J. Z.; Li, R. K. Y.; Tjong, S. C. Polymer Testing 1997, 16(6), 529-548.
99. Rozman, H. D.; Kon, B. K.; Abusamah, A.; Kumar, R. N.; Ishak, Z. A. Mohd. J Appl Polym Sci, 1998, 69(10), 1993-2004.
100. Kausch, H. H.; Béguelin, Ph. Macromol Symp 2001, 169(1), 79-87.
101. Nielsen, L. E. “Mechanical Properties of Polymers and Composites”, 2, Marcel Dekker, New York (1974).
102. Bigg, D. M. Polymer Composites 1987, 8(2), 115 -122.
103. Stricker, F. Bruch, M. Mülhaupt, R. Polymer, 1997, 38(21), 5347-5353.
104. Moloney, A. C.; Kausch, H. H.; Kaser, T.; Beer, H. R.; J Mater Sci 1987, 22(2), 381-393.
105. Ahmed, S.; Jones, F. R. Composites 1990, 21, 81-84.
106. Liang, J. Z. Macromol Mater Eng 2002, 287(9), 588-591.
107. Landon, G.; Lewis G.; Boden, G. F. J Mater Sci 1977, 12(8), 1605-1613.
108. Bigg, D. M. Polym Eng Sci 1979, 19(16), 1188-1192.
109. Nicolais, L.; Narkis, M. Polym Eng Sci 1973, 13, 469-475.
110. Leidner J.; Woodhams, R. T. J. of Appl Polym Sci 1974, 18(6), 1639-1654.
111. Nicolais, L.; Narkis, M. Polym Eng Sci 1971, 11(3), 194-199.
112. Liang, J. Z.; Li, R. K. Y. Polymer Composites 1998, 19(6), 698-703.
113. Liang J. Z.; Li, R. K. Y. Polymer Int 2000, 49(2), 170-174.
114. S. Lu, L. Yan, X. Zhu and Z. Qi, J Mater Sci, Vol. 27, 4633 (1992)
115. Pathmanathan, K.; Cavaille, J. Y.; Johari, G. P. Polymer 1988, 29(2), 311-319.
116. Radhakrishnan S.; D. R. Saini J Appl Polym Sci 1994, 52(11), 1577-1586.
117. Gustafsson, A.; Salot R.; Gedde, U. W. Polymer Composites 1993, 14(5), 421-429.
118. Kang, S.; Hong, S. I.; Choe, C. R.; Park, M.; Rim, S.; Kim, J. Polymer 2001, 42 (3), 879-887.
119. Arthur, D. J.; Kristal, K. W.; Swei, G. S.; U.S. Patent 5,077,115, 1993.
120. B. Paul, ’Prediction of elastic constants of multiphase materials”, Transactions of the Metallurgical Society of AIME 1960, 218(1), 36-41.
121. Deng, Z.; Wang, J.; Wu, A.; Shen, J.; Zhou, B. J. Non-Cryst Soilds 1998, 225, 101-104.
122. Brinker, C. J.; Scherer, G. W.; Roth, E. P. J Non-Cryst Solids 1985, 72, 345-368.
123. Mah, S. K.; Chung, I. J. J Non-Cryst Solids 1995, 83, 252-259.
124. Wei, Y.; Jin, D.; Yang, C.; Kels, M. C.; Qiu, K. Y. Mater Sci and Engin 1998,C6, 91-98.
125. Nakane, K.; Yamashita, T.; Iwakura, K.; Suzuki, F. J Appl Polym Sci 1999, 74, 133-138.
126. Mutter, C.; Bernard, T. N. M.; Peeters, M. P. J.; Thin Solid Film 1999, 351, 95-98.
127. Xenopoulus, C.; Mascia, L.; Shaw, S. J Mater Sci and Engin 1998, C6, 99-114.
128. De Witte, B. M.; Commers, D.; Uytterhoeven, J. B., J Non-Cryst Solids 1996, 202, 35-41.
129. Babonneau, F.; Bios, L.; Livage, J. J Non-Cryst Solids 1992, 147-148, 280-284.
130. Tian, D.; Dubois, P.; Jerome, R. Polymer 1996, 37, 3983-3987.
131. Lemoine, C.; Gilbert, B.; Michaux, B.; Pirard, J. P; Lecloux, A. J Non-Cryst Solids 1994, 175, 1-13.
132. Wu, C. K. J Amer Ceram Soc 1980, 63, 453-457.
133. Mukherjee, S. P.; Evans, P. E. Thin Solid Films 1972, 14, 105-118.
134. Pliskin, W. A. J Vac Sci Techn 1979, 14, 1064-1081.
135. Serhal, Z.; Morvan, J.; Rezrazi, M.; Bercot, P. Surface and Coat Techn 2001, 140, 166-174.
136. Dannetun, P.; Schott, M.; Vilar, M. R. Thin Solid Films 1996, 286, 321-329.
137. Rao, A.V.; Wagh, P. B. Mater Chem and Phy 1998, 53, 13-18.
138. Sassi, Z.; Bureau, J. C.; Bakkali, A. Vibrational Spectro 2002, 28, 299-318.
139. Sindorf, D. W.; Maciel, G. E. J Phys Chem 1982, 86, 5028-5219.
140. Sutra, P.; Fajula, F.; Brunel, D.; Lentz, P.; Daelen, G.; Nagy, J. B. Colloid Surface A 1999, 158, 21-27.
141. Yokogawa, H.; Yokoma, M. J Non-Cryst Solids 1995, 186, 23-29.
142. Wouters, B. H.; Chen, T.; Dewide, M.; Grobet, P. J. Micropor Mesopor Mater 2001, 44-45, 453-457.
143. Monde, T.; Nakayama, N.; Yano, K.; Yoko, T.; Konakahara, T.; J Colloid and Interface Sci 1997, 185, 111-118.
144. Hirash, H.; Sudoh, K. J Non-Cryst Solids 1992, 145, 51-54.
145. Takei, T.; Yamazaki, A.; Watanabe, T.; Chikazawa M.; Konakahara T. J Colloid and Interface Sci 1997, 188, 409-414.
146. Zhao, X. S.; Lu, G. Q. J Phys Chem B 1998, 102, 1556-1561.
147. Zhao, X. S.; Lu, G. Q.; Whittaker, A. K.; Millar, G. J.; Zhu, H. Y. J Phys Chem B 1997, 101, 6525-6531.
148. Fricker, J. J Sol-Gel Sci Techn 1998, 13, 299-303.
149. Fadda, E.; Berenguer, M.; Clarisse, C. J Vac Sci Techn 1995, B13: n3, 1055-1057.
150. Kano, Y.; Akiyama S. Polymer 1993, 34, 376-381.
151. Hong, J. K.; Kim, H. R.; Park, H. H.; Hyun, S. H. Applied Surface Science 2001, 169-170, 452-456.
152. Ma, C. C. M.; Lin, J.M.; Chang, W. C.; Ko, T. H. Carbon 2002, 40, 977-984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top