跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥餘
研究生(外文):Yen-Yu Huang
論文名稱:含圓球微相之團聯式共聚物之自組裝奈米結構研究:緊密堆積之超晶格排列與結晶引發之微相型態
論文名稱(外文):Self Assembled Architecture of Sphere-Forming Poly(ethylene oxide)-block-Polybutadiene/Polybutadiene Homopolymer Blends: Closely-Packed Macrolattice and Crystallization-Induced Structural Perturbation
指導教授:陳信龍陳信龍引用關係
指導教授(外文):Hsin-Lung Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:191
中文關鍵詞:自我組裝團聯式共聚合摻合体結晶超晶格排列
外文關鍵詞:self assembledblock copolymer blendcrystallizationmacrolattice packingpoly(ethylene oxide)-block-polybutadiene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
Self-assembly is a process that autonomously organizes the building blocks into ordered patterns or structures from a disordered state. These ordered structures usually possess a hierarchy of length scales and represent to a state of lowest free energy. Self-assembly is reversible and can be manipulated by proper controls of the external conditions (e.g. temperature, concentration). Recently, self-assembly has been exploited as a practical strategy for constructing ordered nanostructures and has thus become an essential part in nanotechnology. Block copolymers are capable of self-assembling into a series of long-range ordered morphology governed by interblock segregation strength and the volume fraction of the constituting blocks. Therefore, they have been considered as one of the most important self-assembled polymer materials.

Three topics concerning diblock copolymer blends have been studied in this dissertation, including (1) phase transition, (2) crystallization-induced perturbations of microdomain structure and (3) cocrystallization behavior. The diblock system studied in here was poly(ethylene oxide)-block-polybutadiene (PEO-b-PB).

A lamellae-forming PEO-b-PB was blended with a low molecular weight homopolymer PB (h-PB) to yield PEO spheres dispersed in the PB matrix. The first experimental evidence on the existence of face-centered cubic (FCC) phase in diblock copolymer/homopolymer blends was disclosed here. The thermal reversibility experiment verified that the FCC packing was a thermodynamically stable phase at elevated temperature. The driving force of the order-order transition (OOT) between BCC and FCC phase was postulated to stem from the balance between packing frustration and interfacial energy. More importantly, the BCC-FCC OOT was found to occur if the system contained the corresponding precursor prior to transition. The lack of such a precursor may be responsible for the prevalent lack of BCC-FCC OOT among diblock copolymer systems in the bulk.

Crystallization in the microdomains of crystalline-amorphous diblock copolymers may induce domain coalescence when the crystallization temperature lies above the Tg of the amorphous matrix. We have systematically studied the effect of crystallization on the microdomain morphology of PEO-b-PB/h-PB blends exhibiting spherical morphology in the melt. Isothermal crystallization was found to deform the originally spherical domain into ellipsoidal object with aspect ration of ca. 1.3. Drastic perturbation of the domain structure was induced by annealing the crystalline samples near the onset of melting, where two to three microdomains coalescence into a rod object. We have also examined the role of h-PB in the domain coalescence. It was observed that the blend containing higher h-PB content exhibited a stronger resistance against microdomain coalescence. The resistance was presumed to stem from the diffusion barrier associated with the rejection of a portion of h-PB originally dissolved in the coronal regions of the micelles during the coalescence process.

The binary blends of a short symmetric PEO-b-PB and a long asymmetric PEO-b-PB have been studied to examine the cocrystallization behavior of the longer and the shorter PEO blocks confined in the lamellar microdomains. Cocrystallization was found to occur over a wide range of undercooling whereas the corresponding blends of PEO homopolymers with similar molecular weights and compositions displayed phase-segregated crystallization. In contrast to the kinetically trapped solid solutions formed in homopolymer blends, the cocrystallization behavior observed here may be driven thermodynamically to attain a lower interfacial energy in the system while allowing the long PB blocks in the asymmetric diblock to relax conformationally.
Self-assembly is a process that autonomously organizes the building blocks into ordered patterns or structures from a disordered state. These ordered structures usually possess a hierarchy of length scales and represent to a state of lowest free energy. Self-assembly is reversible and can be manipulated by proper controls of the external conditions (e.g. temperature, concentration). Recently, self-assembly has been exploited as a practical strategy for constructing ordered nanostructures and has thus become an essential part in nanotechnology. Block copolymers are capable of self-assembling into a series of long-range ordered morphology governed by interblock segregation strength and the volume fraction of the constituting blocks. Therefore, they have been considered as one of the most important self-assembled polymer materials.

Three topics concerning diblock copolymer blends have been studied in this dissertation, including (1) phase transition, (2) crystallization-induced perturbations of microdomain structure and (3) cocrystallization behavior. The diblock system studied in here was poly(ethylene oxide)-block-polybutadiene (PEO-b-PB).

A lamellae-forming PEO-b-PB was blended with a low molecular weight homopolymer PB (h-PB) to yield PEO spheres dispersed in the PB matrix. The first experimental evidence on the existence of face-centered cubic (FCC) phase in diblock copolymer/homopolymer blends was disclosed here. The thermal reversibility experiment verified that the FCC packing was a thermodynamically stable phase at elevated temperature. The driving force of the order-order transition (OOT) between BCC and FCC phase was postulated to stem from the balance between packing frustration and interfacial energy. More importantly, the BCC-FCC OOT was found to occur if the system contained the corresponding precursor prior to transition. The lack of such a precursor may be responsible for the prevalent lack of BCC-FCC OOT among diblock copolymer systems in the bulk.

Crystallization in the microdomains of crystalline-amorphous diblock copolymers may induce domain coalescence when the crystallization temperature lies above the Tg of the amorphous matrix. We have systematically studied the effect of crystallization on the microdomain morphology of PEO-b-PB/h-PB blends exhibiting spherical morphology in the melt. Isothermal crystallization was found to deform the originally spherical domain into ellipsoidal object with aspect ration of ca. 1.3. Drastic perturbation of the domain structure was induced by annealing the crystalline samples near the onset of melting, where two to three microdomains coalescence into a rod object. We have also examined the role of h-PB in the domain coalescence. It was observed that the blend containing higher h-PB content exhibited a stronger resistance against microdomain coalescence. The resistance was presumed to stem from the diffusion barrier associated with the rejection of a portion of h-PB originally dissolved in the coronal regions of the micelles during the coalescence process.

The binary blends of a short symmetric PEO-b-PB and a long asymmetric PEO-b-PB have been studied to examine the cocrystallization behavior of the longer and the shorter PEO blocks confined in the lamellar microdomains. Cocrystallization was found to occur over a wide range of undercooling whereas the corresponding blends of PEO homopolymers with similar molecular weights and compositions displayed phase-segregated crystallization. In contrast to the kinetically trapped solid solutions formed in homopolymer blends, the cocrystallization behavior observed here may be driven thermodynamically to attain a lower interfacial energy in the system while allowing the long PB blocks in the asymmetric diblock to relax conformationally.
Table of Contents

Abstract I

誌謝辭 IV

Table of Contents VI

List of Tables X

List of Figures XI


Chapter 1. Phase Behavior of Diblock Copolymer and Its Blend
with the Corresponding Homopolymer

1.1 Background 1
1.2 Amorphous-Amorphous Diblock Copolymers 2

1.2.1 Phase Behavior 2
1.2.2 Applications of A-b-B for Nanopatterning 6

1.3 Phase Behavior of Crystalline-Amorphous Diblock Copolymers 14
1.4 Phase Behavior of Diblock Copolymer/Homopolymer Blends 19
1.5 Motivations and Objectives of the Present Research 24
1.6 Overview of The Thesis 27
1.7 References 30


Chapter 2. Face-Centered Cubic Lattice of Spherical Micelles
in Block Copolymer/Homopolymer Blends

2.1 Introduction 37
2.2 Experimental Section 40
2.3 Results and Discussion 41

2.3.1 The Determination of Melt Structures 41
2.3.2 Determination of �� for PEO-b-PB 58
2.3.2.1 Theoretical Fitting Results 60

2.4 Conclusions 63
2.5 Appendix. Relative Positions of the Diffraction Peaks
of the HCP Lattice 64
2.6 References and Notes 65


Chapter 3. Thermal Reversibility of BCC-FCC Order-Order Transition
in the Sphere-Forming Blend of
Poly(ethylene oxide)-block-Polybutadiene and Polybutadiene

3.1 Introduction 69
3.2 Experimental Section 71

3.2.1 Materials 71
3.2.2 SAXS Measurement 72

3.3 Results 73
3.4 Discussion 91

3.4.1 Temperature-Dependent Lattice Packing 92
3.4.2 The Formation of t-FCC Phase 94
3.4.3 The Precursor Effect 95

3.5 Conclusions 98
3.6 References and Note 100


Chapter 4. Crystallization-Induced Deformation of Spherical
Microdomains in Block Copolymer Blends Consisting
of a Soft Amorphous Phase

4.1 Introduction 104
4.2 Experimental Section 106

4.2.1 Materials 106
4.2.2 Differential Scanning Calorimetry (DSC) Measurement 106
4.2.3 SAXS Measurement 107
4.2.4 Transmission Electron Microscopy (TEM) 109

4.3 Results and Discussion 109
4.4 Concluding Remarks 119
4.5 References and Notes 123


Chapter 5. Coalescence of Crystalline Microdomains Driven by
Postannealing in a Block Copolymer Blend

5.1 Introduction 125
5.2 Experimental Section 128

5.2.1 Materials 128
5.2.2 Differential Scanning Calorimetry (DSC) Measurement 128
5.2.3 SAXS Measurement 131
5.2.4 TEM Observation 131

5.3 Results and Discussion 131
5.4 Conclusions 138
5.5 References and Notes 140


Chapter 6. Crystallization-Induced Microdomain Coalescence in
Sphere-Forming Crystalline-Amorphous Diblock Copolymer
Systems: Neat Diblock versus The Corresponding Blends

6.1 Introduction 142
6.2 Experimental Section 145

6.2.1 Materials and Sample Preparation 145
6.2.2 SAXS Measurement 148
6.2.3 TEM Experiment 148

6.3 Results and Discussion 149

6.3.1 Microdomain Structure in B63 Blend 149
6.3.2 Microdomain Structure in B12 Blend 156
6.3.3 Microdomain Structure in N00 System 156

6.4 Conclusions 168
6.5 References 169


Chapter 7. Cocrystallization Behavior in Binary Blend of Crystalline-Amorphous Diblock Copolymers

7.1 Introduction 172
7.2 Experimental Section 173
7.3 Results and Discussion 174
7.4 Conclusions 183
7.5 References and Notes 185


Chapter 8. Suggestion to Future Work 187


List of Publication 189


List of Tables

Table 2.1 Diffraction planes and relative positions of the lattice peaks of BCC, FCC, and HCP lattices………………………………………………………… 44
Table 4.1 Crystallinities (Xc) and melting points (Tm) of crystalline PEO-b-PB/PB blends subjected to the two crystallization processes………………….. 108
Table 4.2 Results of the fit by spherical form factor for amorphous and crystalline PEO-b-PB/PB blends………………………………………………….. 114
Table 4.3 Results of the fit by elliptic form factor for amorphous and crystalline PEO-b-PB/PB blends………………………………………………….. 118
Table 5.1 Crystallinities (Xc) and melting points (Tm) of as-crystallized and annealed PEO-b-PB/PB blend with fPEO = 0.17…………………………………. 129
Table 5.2 Results of the fit by elliptic form factor for PEO-b-PB/PB blend (fPEO = 0.17) subjected to crystallization at -30 °C and postannealing………… 134
Table 6.1 Characteristics of the PEO-b-PB and PEO-b-PB/h-PB blend
under study…………………………………………………………….. 147
Table 6.2 Results of the fits by the ellipsoidal form factor for isothermally crystallized B63 blend…………………………………………………. 153
Table 6.3 Results of the fits by ellipsoidal form factor for isothermally crystallized N00 system…………………………………………………………….. 163
Table 6.4 The elliptic surface area (S), the amount of h-PB remaining in the coronal regions (��), free energy of mixing (Fmix), and interfacial free energy (Fint) before and after coalescence of two ellipsoidal domains for B63 blend calculated using the domain dimensions in Table 6.2………………..... 167
Table 7.1 Characteristics of the binary diblock copolymer blends studied in this work……………………………………………………………………. 175


List of Figures

Figure 1.1 The phase diagram in the weak segregation regime developed by Leibler. In the diagram, “Disordered” indicates the homogeneous melt, “b.c.c” indicates the BCC packed sphere, “hex” denotes the hexagonally-packed cylinders and “lam” corresponds to the lamellar morphology………….. 4
Figure 1.2 The phase diagram established by Matsen and Bates using SCMF theory. represents the gyroid phase with symmetry and CPS represents the closely packed sphere structure, in which the spherical micelles arrange in FCC or HCP lattice………………………………….5
Figure 1.3 Schematic showing the variation of inverse scattering intensity, I-1, and domain spacing, d, across the order-disorder transition of a block copolymer melt. The mean-field transition temperature has been identified operationally as the point where, on heating, the inverse intensity crosses over to a linear dependence on T-1……………………. 7
Figure 1.4 The SEM micrographs of the morphology in (a) low-density polyethylene (LDPE) and polystyrene (PS) homopolymer blend and (b) that of adding PS-b-P(S-co-B)-b-PB triblock copolymer in the (a) blend. Form the image, the scale of phase separation can be largely reduced by adding triblock copolymer………………………………………………………. 9
Figure 1.5 Schematic showing of the formation of microporous materials in the rod-coil diblock copolymer. (a) Illustrate the formation steps of microporous pattern. (b) The discrete hollow micelles were randomly oriented in the dilute solution and (c) The hollow micelles were rearranged into highly periodic structure with uniform diameter 2 �慆 in the concentrated solution………………………………………………. 10
Figure 1.6 The TEM micrograph shows that the nanochannel appears dark phase due to the nickel coating process. The bicontinuous structure can be well-retained without perturbing by the metal plating. In the image, the PI block has been suffered the ozonolysis process…………………….. 11
Figure 1.7 The AFM images show the morphology of nanochannels from the top and lateral views. In the image, the hollow nanochannels was initially created by the self-assembly of PMMA blocks and eventually removed by exposing to the UV light. The white region indicates the crosslinked PS blocks………………………………………………………………. 13
Figure 1.8 TEM micrograph showing the crystalline morphology of PEO-b-PB diblock. The PB phase appears as the dark region due to staining by the OsO4 vapor; the PEO phase is found as the gray interconnected lamellae………………………………………………………………... 17
Figure 1.9 The schematic classification map to illustrate the relation between the crystallization molds and the microstructures in terms of the (�粍t)c/(�粍t)ODT and �����n. (�粍t)c indicates the strength of (�粍)t measured at isothermal crystallization temperature, Tc, and (�粍t)ODT indicates the strength of (�粍)t measured at TODT. �����nrepresents the volume fraction of the crystalline block…………………………………………………… 18
Figure 1.10 The representative phase diagram of A-b-B/h-A blend developed by Matsen. The diagram was calculated on the basis of A-monomer fraction in A-b-B (f) and homopolymer volume fraction �� at �� = 2/3 and segregation strength �粍 = 11. CPS phase was also predicted theoretically in this diagram……………………………………………20
Figure 1.11 Schematic illustration of the compatibility in A-b-B/h-A blends. (a) ���n» 1; h-A hardly penetrates into A microdomain and macrophase separates from A-b-B. (b) h-A is localized in the middle region of A microdomain or partially penetrates in the A microdomain. In this case, the system is denoted as “dry brysh”. (c) h-A is uniformly solubilized into A microdomain. This system is called “wet brush”……………………….22
Figure 1.12 Spinodal lines for the macrophase transition (solid lines) and microphase transition (broken lines) for the PS-b-PI/h-PS blends with ���nvarying�nfrom (left to right) 1.4, 4.3, to 12.6…………………………………………... 23
Figure 1.13 TEM micrographs showing the morphology of dry brush PS-b-PI/h-PS blends (���n= 1.24). The blend compositions are indicated in the left-bottom of the figure.110 The alternating packed lamellae phase formed by neat PS-b-PI, as shown in figure a, starts to bend and to transform its morphology from lamellar vesicle (figure b), to cylindrical vesicle (figure d) and finally to spherical vesicle (figure d) with increasing h-PS concentration…………………………………………. 25
Figure 2.1 Comparison between the SAXS profiles collected in-situ at 183 °C with that measured in-situ at 123 °C. The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The relative positions of the higher order lattice peaks are indexed by the thin arrows, while the form factor peaks (denoted by “i = n” with n = 1, 2, ...) are indicated by the bold opened arrows. The dotted line signifies the form factor profile of spheres calculated by assuming �嵇���n= 7.5 nm and the standard deviation of R, �箐 = 0.72 nm (Gaussian distribution was adopted for R distribution)…….. 42
Figure 2.2 SAXS profiles showing that the FCC phase at 183 °C was not destroyed immediately after cooling to room temperature. Top curve (with qm = 0.30 nm-1): collected in-situ at 183 °C. Middle curve (with qm = 0.286 nm-1): collected immediately after cooling to room temperature. Bottom curve (with qm = 0.268 nm-1): collected after annealing the cooled sample at room temperature for 168 hrs……………………………………….. 46
Figure 2.3 Representative TEM micrographs of PEO-b-PB/PB blend (fPEO = 0.17) quenched from 183 °C. The dark matrix is the PB phase owing to the preferential staining by OsO4………………………………………….. 47
Figure 2.4 Characteristics of FCC lattice and the TEM image generated by computer graphics. (a) 3-D structure of a FCC unit cell; the edge length of the unit cell is a, and the coordinate is defined in such a way that z axis aligns normal to the (111) plane. The FCC lattice can be built by stacking together (111) planes in a ABCABC... stacking sequence. The spheres in plane B fit over valleys of those in plane A and the spheres in plane C fit over valleys of those in both planes A and B. The distance between two adjacent planes is (3)1/2a/3. (b) Computer-generated TEM image for the thin section cut parallel to (111) planes in FCC lattice. The origin of the z axis is defined at the center of the spheres in plane B, and the offset position, z0, specifies the centerline of the thin section (represented by the shadowed region) relative to the position of z = 0. We binarize the contrast of each phase in such a way that the sphere is bright and matrix is dark and then calculate the average contrast of the TEM image of a given thickness. The image consistent with that observed in Figure 3 is generated using the parameters of thin section thickness = a, D/a = 0.44 (corresponding to the sphere volume fraction of 0.18, being close to the volume fractions calculated from stoichiometry (0.17) and the SAXS peak positions (0.15)), and z0 = 0.14a. In this case, the spheres at plane A are not included in the thin section, so they disappear in the TEM micrograph; the image consists of bright spheres in plane B, gray spheres in plane C, and a dark matrix…………………………………………... 49
Figure 2.5 Series of SAXS profiles collected in-situ at various temperatures from 123 to 183 °C, showing an OOT from BCC to FCC phase. The total experimental time spent between the SAXS measurement at 135 and that at 163 °C, i.e., the time period over which the BCC symmetry was transformed into the FCC symmetry, was 8 hrs. The change in qm with temperature (T) can be evaluated from that in D (= 2��/qm) with T shown in Figure 2.7……………………………………………………………. 52
Figure 2.6 Series of SAXS profiles collected in-situ at T ≥ 183 °C, showing an ODT from FCC phase to disordered micelles followed by demicellization into a homogeneous melt. The same comment as that in Figure 2.5 is applicable for the change in qm with T. The background level is drawn by the dashed line to manifest the form factor scattering…………………. 54
Figure 2.7 (a) Determinations of the lattice disordering temperature (TLDOT) or ODT from FCC phase to disordered micelle phase from the plots of Im-1 vs. T-1 and D vs. T-1 in the heating process. A small discontinuity (denoted by the solid arrows) in Im-1 is also identified across the BCC-FCC OOT, as demonstrated more clearly by the enlarged plot in part (b)………… 56-57
Figure 2.8 The plot of the theoretically calculated (see the solid line) profiles and the experimentally observed profiles (see the symbol mark) at each prescribed temperature. It can clearly see that the theoretically calculated profiles are highly matching the experimentally observed ones……… 61
Figure 2.9 �紞EO-PB dependence on T-1. From the linear region, the relationship of can be obtained……………………………………... 62
Figure 3.1 Thermal protocol adopted in the SAXS measurement in the present study. (a) is for the blend directly heating from the as-cast state while (b) is for the blend annealing at -23 oC prior to the heating cycle. The types of thermal treatment, heating, cooling and reheating cycle, were conducted. Their respective time windows were marked by the solid arrows…. 74-75
Figure 3.2 A series of SAXS profiles of the as-cast blend collected in-situ at various temperatures from (a) 30 to 230 oC in the heating cycle and (b) subsequently cooling from 230 to 120 oC. The thermal protocol subjected to this blend was shown in Figure 3.1(a). The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The change in q¬m with temperature can also be evaluated from that in D (= 2��/qm) with T shown in Fig. 3.6…………………………………………………………… 76-77
Figure 3.3 A series of SAXS profiles of the blend annealed at -23 oC collected in-situ at various temperatures from (a) 100 to 200 oC and (b) 205 to 260 oC in the heating cycle. The thermal protocol subjected to this blend was shown in Figure 3.1(b). The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The change in q¬m with temperature can be evaluated from that in D (= 2��/qm) with T shown in Fig. 3.7. The opened arrows identify the characteristic peak positions relative to the first-order peak position ((4/3)1/2: (8/3)1/2…) that a FCC lattice should exhibit, while the solid arrows pinpoint the relative peak positions (21/2: 31/2: 41/2...) associated with a BCC phase. The broad peak marked by “i=1” is the first-order form factor of the spherical microdomain……………… 79-80
Figure 3.4 A series of SAXS profiles of the annealed blend collected in-situ at various temperatures from (a) 260 to 205 oC and (b) 200 to 110 oC in the cooling cycle from the FCC phase at 260 oC. The change in q¬m with temperature can also be evaluated from that in D (= 2��/qm) with T shown in Fig. 3.7………………………………………………………...… 82-83
Figure 3.5 A series of SAXS profiles of the annealed blend collected in-situ at temperatures from110 to 260 oC in the reheating cycle from the complete BCC order at 110 oC. The BCC �p FCC OOT observed in the first heating cycle (cf. Figure 3.3 (b)) no longer occurs up to 260 oC, as BCC phase is found to span to whole temperature window. The change in q¬m with temperature can also be evaluated from that in D (= 2��/qm) with T shown in Fig. 3.7………………………………………………………. 85
Figure 3.6 Im-1 and D vs T-1 plots for the as-cast PEO-b-PB/h-PB blend. The boundary between t-FCC and FCC phases is marked at 170 oC by the vertical dashed line, which is determined by the slop change in Im-1 in the heating cycle. In the cooling cycle, Im-1 and D are closely agreed with those in the heating cycle when temperature elevates above 170 oC. Little hysterysis stemming from the metastable nature of the trapped FCC phase is found below 170 oC. The parenthesis in the symbol denotes the thermal treatment where H represents the Im-1 collected in the heating cycle and C represents that collected in the cooling cycle. The temperature dependence of D is similar to that in Im-1…………… 86
Figure 3.7 Im-1 vs T-1 plots for the annealed PEO-b-PB/h-PB blend. The boundary between BCC and FCC phases is marked at 200 oC by the vertical dashed line, in that this temperature roughly represents the point where FCC phase vanishes in the cooling cycle. Little hysterysis effect is found across the BCC-FCC OOT at high temperature (i.e., in the temperature region from 170 to 260 oC), while strong hysterysis stemming from the metastable nature of the trapped FCC phase is found below 170 oC. Through comparing Im-1s in cooling and reheating cycles, another strong hysterysis is found to appear with reheating the cooled blend. The hysterysis is originating from the coexistence of BCC and FCC phase in the onset of cooling. The parenthesis in the symbol denotes the thermal treatment where H represents the Im-1 collected in the heating cycle, C represents that collected in the cooling cycle and RH represents that collected in the reheating cycle. The inset in the figure shows Im-1 vs. T-1 across the BCC-FCC OOT for the system with shorter PEO block (Mb,PEO = 6.0 x 103).21…………………………………………………. 88
Figure 3.8 D and �嵇�� vs T-1 plots for the annealed PEO-b-PB/h-PB blend. �嵇�� is obtained by fitting the form factor profiles using polydisperse spherical form factor. The temperature dependences of D and �嵇�� display a strong hysterysis below 170 oC due to the presence of trapped FCC phase in the as-cast blend. In the reheating cycle, a very little hysterysis originating from the coexistence of FCC and BCC phase in the onset of cooling cycle is found to appear above 170 oC………………………………… 90
Figure 3.9 Left: Wigner-Seitz (W-S) cell for a BCC and a FCC phase, respectively. Middle: The spatially packed W-S cell for individual BCC and FCC phase. Right: For a FCC/BCC mixed phase, the corresponding W-S cells do not perfectly match each other at the grain boundary between BCC and FCC phases. Vacancies (or density dips) will simultaneously appear because of the mismatch of the two distinct W-S cells as the gray regions shown. These density dips may lead the system toward instability arising from the nonuniform density distribution and the generation of extra interfacial energy………………………………………………………. 96
Figure 4.1 SAXS profiles of amorphous and crystalline PEO-b-PB/PB blends: (a) 1K17 composition (fPEO = 0.17) and (b) 1K13 composition (fPEO = 0.13). The scattering curves of the amorphous samples are marked by “AM”. Those marked by “SC” and “IX” signify the scattering profiles of the samples crystallized by cooling from the melt to -50 °C at -5 °C/min and by isothermal crystallization at -50 °C, respectively. The form factor peaks are denoted by “i = n” with n = 1, 2, 3, ...................................... 110
Figure 4.2 Fits of the experimental form factor profiles by the spherical form factor for amorphous and crystalline (a) 1K17 and (b) 1K13 blends. The solid curves are the calculated profiles…………………………………….. 113
Figure 4.3 Fits of the experimental form factor profiles by the elliptic form factor for amorphous and crystalline (a) 1K17 and (b) 1K13 blends. The solid curves are the calculated profiles. The model of the ellipsoid assumed is also shown in (a)……………………………………………………… 117
Figure 4.4 A schematic presentation proposing the structure of the ellipsoid-like crystalline microdomains…………………………………………….. 120
Figure 4.5 TEM micrographs showing (a) amorphous and (b) crystalline PEO microdomains in 1K13 blend. Spheres were drawn in the corners of the micrographs to help distinguish between the actual shape of the microdomains and that of a sphere. Crystalline microdomains with higher magnification are shown in (c) to better present the images of the ellipsoid-like domains……………………………………………….. 121
Figure 5.1 DSC melting curves of PEO-b-PB/PB blend (fPEO = 0.17) recorded after crystallizations at -30 and -50 °C. The locations of the annealing temperatures chosen (i.e., Ta = 38 and 41 °C) are indicated by the dashed lines. Both Ta’s are seen to situate near the onsets of melting………... 130
Figure 5.2 SAXS profiles of the amorphous, as-crystallized, and annealed samples of PEO-b-PB/PB blend (fPEO = 0.17). The crystallization temperatures are (a) -30 °C and (b) -50 °C. The scattering maxima denoted by “i = n” (n = 1, 2, 3, ...) are the form factor peaks. Both lattice and form factor scatterings are significantly perturbed after the as-crystallized samples have been subjected to postannealing. The solid curves in (a) are the profiles calculated using elliptic form factor. The average dimensions obtained are listed in Table 5.2……………………………………...... 132
Figure 5.3 Representative TEM micrographs showing the morphology of the as-crystallized or annealed samples for the blends with fPEO = 0.17 and 0.13. The composition and thermal treatment are (a) fPEO = 0.17, as-crystallized at -30 °C; (b) fPEO = 0.17, annealed at 38 °C after crystallization at -30 °C; (c) fPEO = 0.17, annealed at 41 °C after crystallization at -50 °C; and (d) fPEO = 0.13, annealed at 38 °C after crystallization at -30 °C………………………………………………. 135
Figure 6.1 Room-temperature SAXS profiles of B63 blend collected after crystallization at Tc ranging from -50 to -23 oC. The intensity profile of the amorphous sample is also displayed for comparison. In the plot, the maxima marked by “i = n” (n = 1, 2) are the form factor peaks associated with the scattering from isolated microdomains. The solid curves are the profiles calculated using ellipsoidal form factor. The dimensions of the ellipsoidal domains obtained from the form factor fits are listed in Table 6.2…………………………………………………………………….. 150
Figure 6.2 The position of the first-order form factor peak (qformi=1) of B63 blend as a function of Tc. The horizontal dash line specifies the qformi=1 of the amorphous sample. Two regimes separated by the vertical dash line are identified. The form factor peak locates at slightly higher q than that of the amorphous sample for Tc lower than -31 oC ( Regime I), while the form factor maxima situate at lower q for Tc lying above -31 oC (Regime II)…………………………………………………………………....... 152
Figure 6.3 TEM micrographs of B63 blend after crystallization at (a) -23 oC and (b) -50 oC…………………………………………………………………. 155
Figure 6.4 TEM micrographs of B63 blend having been postannealed at 38 oC. The samples had been crystallized at (a) -23 oC and (b) -50 oC prior to the postannealing…………………………………………………………. 157
Figure 6.5 TEM micrographs of B12 blend: (a) as-crystallized at -30 oC; and (b) annealed at 38 oC after crystallization at -30 oC……………………… 158
Figure 6.6 Room-temperature SAXS profiles of N00 collected after crystallization at -23 oC, -30 oC and -50 oC. The intensity profile of the amorphous sample is also displayed for comparison. The solid curves are the profiles calculated using ellipsoidal form factor fitting. The dimensions of the ellipsoidal domains obtained from the form factor fits are listed in Table 6.3…………………………………………………………………….. 160
Figure 6.7 TEM micrographs of N00 in (a) amorphous state and the as-crystallized state with Tc = (b) -23 oC and (c) -50 oC………………………………161
Figure 6.8 TEM micrographs of N00 having been postannealed at 38 oC. The samples had been crystallized at (a) -23 oC and (b) -50 oC prior to the postannealing…………………………………………………………. 164
Figure 7.1 (a) SAXS profiles of lamella-forming E80B481/E170B102 blends in the melt state. The SAXS experiments were conducted at 90 oC; (b) variations of the interlamellar distance (D) and the area per junction point at the lamellar interface (��) with the number fraction of the asymmetric E80B481 (nas)…………………………………………………………………….176
Figure 7.2 Schematic illustrations of the structures of E80B481/E170B102 blend: (a) the melt structure formed by the intimate mixing of the two diblocks, where each lamellar domain is constituted of two layers of brushes lying on top of each other; (b) a crystalline structure generated by the phase-segregated crystallization, where the crystallites formed by the longer and shorter PEO blocks coexist within the lamellar domains upon fractionation. The long PB blocks are highly stretched to maintain the normal density in the PB domain; (c) the crystalline structure generated by cocrystallization. This structure allows the lower interfacial energy and higher conformational entropy of the long PB blocks in the melt state to be largely retained………………………………………………….. 179
Figure 7.3 DSC melting curves of h-E76/h-E182 and E80B481/E170B102 blends obtained after isothermal crystallization; (a) h-E76/h-E182, Tc = 8 oC; (b) h-E76/h-E182, Tc = 40 oC; (c) E80B481/E170B102, Tc = 8 oC; (d) E80B481/E170B102, Tc = 40 oC. Each bracket in (a) and (b) indicates the corresponding composition of the diblock blend with the same mixing ratio of the shorter and the longer PEO chains as that in the homopolymer blend. The melting curves of neat E80B481 in (c) and (d) were obtained after cooling the sample to -50 oC…………………….. 182
chapter 1
(1) Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87.
(2) Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922.
(3) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182.
(4) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422.
(5) Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433.
(6) Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052.
(7) Meier, D. J. J. Polym. Sci., part C 1969, 26, 81.
(8) Helfand, E. Macromolecules 1975, 8, 552
(9) Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879.
(10) Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960.
(11) Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994.
(12) Weidisch, R.; Ensslen, M.; Michler, G. H.; Fischer, H.; Macromolecules 1999, 32, 5375.
(13) Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
(14) Leibler, L. Macromolecules 1980, 13, 1602.
(15) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(16) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(17) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(18) Aggarwal, S. L. Polymer 1972, 17, 938.
(19) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetter, L. J. Macromolecules 1993, 26, 5796.
(20) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(21) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(22) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, 754.
(23) Sakurai, S.; Hashimoto, T.; Fetters, L. J. Macromolecules 1996, 29, 740.
(24) Almdal, K.; Koppi, K. A.; Bates, F. S.; Mortensen, K. Macromolecules 1992, 25, 1743.
(25) Khandpur, A. K.; Fo¨rster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
(26) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
(27) Hajduk, D. A.; Gruner, S. M.; Rangarajan, P.; Register, R. A.; Fetters, L. J.; Honeker, C.; Albalak, R. J.; Thomas, E. L. Macromolecules 1994, 27, 490.
(28) Vigild, M. E.; Almdal, K.; Mortensen, K.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J. Macromolecules 1998, 31, 5702.
(29) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968.
(30) Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 91, 6255.
(31) Rosedale, J. H.; Bates, F. S. Macromolecules 1990, 23, 2329.
(32) Almdal, K.; Rosedale, J. H.; Bates, F. S.; Wignall, G. D.; Fredrickson, G. H. Phys. Rev. Lett. 1990, 65, 1112.
(33) Mai, S. M.; Fairclough, J. P. A.; Hamley, I. W.; Denny, R. C.; Liao, B.; Booth, C. Ryan, A. J. Macromolecules 1996, 29, 6212.
(34) Han, C. D.; Baek, D. M.; Sakurai, S.; Hashimoto, T. Polym. J. 1989, 21, 841.
(35) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
(36) Hashimoto, T.; Ijichi, Y.; Fetters, L. J. J. Chem. Phys. 1988, 89, 2463.
(37) Ijichi, Y.; Hashimoto, T.; Fetters, L. J. Macromolecules 1989, 22, 2817.
(38) Harrats, C.; Fayt, R.; Jerome, R. Polymer 2002, 43, 863.
(39) Jenekhe, S. A.; Chen, X. L. Science, 1999, 283, 372.
(40) Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir, 1997, 13, 6869.
(41) Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker. C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787.
(42) Urbas, A. M.; Fink, Y.; Thomas, E. L. Macromolecules 1999, 32, 4748.
(43) Urbas, A. M.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
(44) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777.
(45) Kosonen, H.; Valkama, S.; Hartikainen, J.; Eerikäinen, H.; Torkkeli, M.; Jokela, K.; Serimaa, R.; Sundholm, F.; ten Brinke, G.; Ikkala, O. Macromolecules 2002, 35, 10149.
(46) Ikkala, O.; Ruokolainen, J.; ten Brinke, G.; Torkkeli, M.; Serimaa, R. Macromolecules 1995, 28, 7088.
(47) Mäki-Ontto, R.; de Moel, K.; de Odorico, W.; Ruokolainen, J.; Stamm, M.; ten Brinke, G.; Ikkala, O. Adv. Mater. 2001, 13, 117.
(48) Valkama, S.; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Macromolecules 2003, 36, 3986.
(49) Ruokolainen, J.; Mäkinen, R.; Torkkeli, M.; Mäkelä, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557.
(50) Corvazier, L.; Messe, L.; Salou, C. L. O.; Young, R. N.; Fairclough, J. P. A.; Ryan, A. J. J. Mater. Chem. 2001, 11, 2864.
(51) Fink, Y.; Urbas, A. M.; Bawendi, M. G.; Joannopoulos, J. D.; Thomas, E. L. J. Light. Tech. 1999, 17, 1963.
(52) Tanaka, H.; Hashimoto, T. Macromolecules 1991, 24, 5713.
(53) Morrison, F. A.; Winter, H. H. Macromolecules 1989, 22, 3533.
(54) Morrison, F. A.; Winter, H. H.; Gronski, W.; Barnes, J. D. Macromolecules 1990, 23, 4200.
(55) Folkes, M. J.; Keller, A.; Scalisi, F. P. Colloid. Polym. Sci. 1973, 251, 1.
(56) Hadziioannou, G.; Mathis, A.; Skoulis, A. Colloid. Polym. Sci. 1979, 257, 15.
(57) Anastaiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. J. Chem. Phys. 1990, 92, 5677.
(58) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Patel, S.; Smith, S. D. Macromolecules 1991, 24, 6546.
(59) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Smith, S. D. Macromolecules 1993, 26, 2698.
(60) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Hudson, S. D.; Smith, S. D. Macromolecules 1994, 27, 6559.
(61) Rosa, C. D.; Park, C.; Lotz, B.; Wittmann, J.-C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871.
(62) Rosa, C. D.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
(63) Chen, H.-L., Hsiao, S.-C., Lin, T.-L., Yamauchi, K., Hasegawa, H., Hashimoto, T. Macromolecules 2001, 34, 671.
(64) Lee, W., Chen, H.-L., Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519.
(65) Chen, H.-L., Wu, J.-C., Lin, T.-L., Lin, J. S. Macromolecules 2001, 34, 6936.
(66) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(67) Shultz, J. M. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2291.
(68) Jloudas, G.; Tsitsilianis, C. Macromolecules 1997, 30, 4381.
(69) Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
(70) Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L. J.; Bras, W.; Naylor, S. Ryan, A. J. Macromolecules 1995, 28, 1422.
(71) Unger, R.; Beyer, D.; Donth, E. Polymer 1991, 32, 3305.
(72) Zhang, G. Y.; Luo, X. L.; Li, C. F.; Ma, D. Z. J. Polym. Sci., Polym. Phys. Ed. 1999, 37, 575.
(73) Zhu, L., Chen, Y., Zhang, A., Calhoun, B. H., Chun, M., Quirk, R. P., Cheng, S. Z. D. Phys. Rev. B. 1999, 60, 10022.
(74) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D. Macromolecules 2002, 35, 3553.
(75) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(76) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(77) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(78) Loo, Y.-L.; Register, R. A.; Adason, D. H. Macromolecules 2000, 33, 8361.
(79) Quirm, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(80) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(81) Sakurai, K.; MacKnight, W. J.; Lohse, D. J.; Schultz, D. N.; Sissano, J. A.; Lin, J. S.; Agamalyan, M. Polymer 1996, 37, 4443.
(82) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
(83) Quirel, D. J., Register, R. A., Marchand, G. R. Macromolecules 1997, 30, 4551.
(84) Quirel, D. J., Register, R. A., Marchand, G. R. Ryan, A. J. Macromolecules 1997, 30, 8338.
(85) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(86) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168.
(87) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2711.
(88) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(89) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
(90) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(91) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
(92) Nojima, S.; Toei, M.; Hara, S.; Tanimoto, S.; Sasaki, S. Polymer 2002, 43, 4087.
(93) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(94) Xu, J. T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J. Macromolecules 2002, 35, 3614.
(95) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
(96) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
(97) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(98) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Adv. Mater. 2002, 14, 31.
(99) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(100) Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2735.
(101) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(102) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(103) Prahsarn, C.; Jamieson, A. M. Polymer 1997, 38, 1273.
(104) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B. 1995, 213&214, 676.
(105) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75.
(106) Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Macromolecules 1992, 25, 6523.
(107) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Macromolecules 1994, 27, 7893.
(108) Matsen, M. W. Macromolecules 1995, 28, 5765.
(109) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(110) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75

Chapter 2
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(5) Aggarwal, S. L. Polymer 1972, 17, 938.
(6) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetter, L. J. Macromolecules 1986, 19, 2197.
(7) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
(8) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L. Macromolecules 1994, 27, 4063.
(9) Schultz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
(10) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(11) Semenov, A. N. Macromolecules 1989, 22, 2849.
(12) Brazovskii, A. Soviet Phys. JETP 1975, 41, 85.
(13) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.
(14) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621.
(15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 5321.
(16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493.
(17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767.
(18) Dormidontava, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143.
(19) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(20) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(21) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(22) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(23) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(24) Matsen, M. W. Macromolecules 1995, 28, 5765.
(25) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(26) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922.
(27) Semenov, A. N. Macromolecules 1993, 26, 2273.
(28) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys. Rev. Lett. 1993, 71, 2102.
(29) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513.
(30) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869.
(31) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721.
(32) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918.
(33) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(34) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(35) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(36) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491.
(37) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(38) Cullity, B. D.; Stock, S. R Elements of X-ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10.
(39) Nishikawa, Y.; Kawada, H.; Hasegawa, H.; Hashimoto, T. Acta Polym. 1993, 44, 247.
(40) Nishikawa, Y. Interfacial Curvatures of Bicontinuous Phase Structures in Two-Component Polymeric Systems. Ph.D. Thesis, Kyoto University 1999.
(41) Nishikawa, Y.; Hasegawa, H.; Hashimoto, T.; Hyde, S. T. To be submitted for publication.
(42) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436.
(43) Koga, T.; Koga, T.; Hashimoto, T. J. Chem. Phys. 1999, 110, 11076.
(44) Hashimoto, T.; Koga, T.; Koga, T.; Sakamoto, N. In The Physics of Complex Liquids; Yonezawa, F., Tsuji, K., Kaji, K., Doi, M., Fujiwara, T., Eds.; World Sci.: Singapore, 1988; p 291.
(45) Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621.
(46) Bonse, U.; Hart, M. Appl. Phys. Lett. 1965, 7, 238.
(47) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
(48) Roe, R. J. Methods Of X-Ray And Neutron Scattering In Polymer Science ; Oxford University Press: New York, 2000.
(49) Han, C. D.; Baek, D. M.; Kim, J. K. Macromolecules 1990, 23, 561.
(50) Likos, C. N.; Lowen, H.; Poppe, A.; Willner, L.; Roovers, J.; Cubitt, B.; Richter, D. Phys. Rev. E 1998, 58, 6299.
(51) Zhu, L.; Cheng, S. Z. D.; Calhoun. B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(52) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.

Chapter 3
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymer-Science and Technology, Meier, D. J. Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers, Oxford University Press: New York, 1998.
(4) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197.
(5) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
(6) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G..; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
(7) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(8) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(9) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(10) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(11) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(12) Semenov, A. N. Macromolecules 1989, 22, 2849.
(13) Dormidontova, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143.
(14) Schwab, M.; Stühn, B. Phys. Rev. Lett. 1996, 76, 924.
(15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621.
(16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493.
(17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767.
(18) Choi, S.; Lee, K. M.; Han, C. D.; Sota, N.; Hashimoto, T. Macromolecules 2003, 36, 793.
(19) Matsen, M. W. Macromolecules 1995, 28, 5765.
(20) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(21) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
(22) Hamley, I. W.; Daniel, C.; Mingvanish, W.; Mai, S.-M.; Booth, C.; Messe, L.; Ryan, A. J. Langmuir 2000, 16, 2508.
(23) Hamley, I. W.; Pople, J. A.; Diat, O. Colloid Polym. Sci. 1998, 276, 446.
(24) Bang, J.; Lodge, T. P.; Wang, X.; Brinker, K. L.; Burghardt, W. R. Phys. Rev. Lett. 2002, 89, 215505
(25) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys Rev. Lett. 1993, 71, 2102.
(26) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721.
(27) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869.
(28) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513.
(29) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918.
(30) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(31) Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River, NJ, 2001, Ch 10.
(32) The (2)1/2 peak associated with the BCC lattice is weak in the scattering profiles presented here. In this case, one might speculate that the system adopts hexagonally-packed cylinder (HEX) morphology because the lattice peaks associated with this structure follows the relative positions of 1: (3)1/2: (4)1/2:. However, the spherical geometry and BCC packing of the microdomains in the blend quenched from the temperatures where BCC phase was assigned from the SAXS profiles were unambiguously verified by TEM. Moreover, we have also calculated the volume fraction of PEO domains using the SAXS data at these temperatures with the assumptions of BCC and HEX morphology. The volume fraction obtained by assuming BCC packing always agreed well (within 11 %) with the real volume fraction of PEO (i.e., fPEO = 0.17), whereas that calculated by assuming HEX packing was always more than 71 % higher.
(33) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436.
(34) The Wigner-Seitz (W-S) cell may be constructed according to the following four steps. First, select any lattice site as the origin. Second, start at the origin followed by drawing lines to all its neighboring lattice point. Third, draw the perpendicular bisecting plane of each of these lines. Finally, the space enclosed by the resulting polyhedron is the W-S cell. For block copolymers the W-S cell represents the space occupied by a single micelle in a lattice. It is a rhombic dodecahedron for FCC lattice and a truncated octahedron for BCC phase.
(35) Wigner, E.; Seitz, F. Phys. Rev. 1933, 43, 804.
(36) Fredrickson, G. H. Macromolecules 1993, 26, 4351.
(37) Bowen, W. R.; Jenner, F. Chem. Eng. Sci. 1995, 50, 1707.
(38) Lescanec, R. L.; Fetters, L. J.; Thomas, E. L. Macromolecules 1998, 31, 1680.
(39) (a) Hashimoto, T.; Fujimura, M.; Kawai, H. Macromolecules 1980, 13, 1660. (b) Shibayama, M.; Hashimoto, T.; Kawai, H. Macromolecules 1983, 16, 1434. (c) Mori, K.; Hasegawa, H.; Hashimoto, T. Polymer 1990, 31, 2368.
(40) Sakurai, S.; Umeda, H.; Taie, K.; Nomura, S. J. Chem. Phys. 1996, 105, 8902.
(41) Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokama, Y.; Hashimoto, T. Polymer 1999, 40, 7147.
(42) Brandrup, J.; Immergut, E. H. Polymer Handbook. 2nd edition, John Wiley & Sons Inc., 1975, Part IV.
(43) The dilution approximation treats concentrated solutions as uniformly swollen melt phases and the phase behavior maps onto those of melts by replacing �� by ���烳. This mean-field approximation is good enough for our qualitative interpretation on the increase of segregation strength with increase of block copolymer concentration during solvent removal.
(44) Chen H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.

Chapter 4
(1) Hirata, H.; Ijutsu, T.; Soen, T.; Hashimoto, T.; Kawai, H. Polymer 1975, 16, 249.
(2) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(3) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168.
(4) Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640.
(5) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(6) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(7) Rangarajan, P.; Register, R. A.; Fetters, L. J.; Naylor, S.; Ryan, A. J. Macromolecules 1995, 28, 1422.
(8) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(9) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(10) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2716.
(11) Ryan, A. J.; Fairclough, J. P. A.; Hamley, I. W.; Mai, S.-M.; Booth, C. Macromolecules 1997, 30, 1723.
(12) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338.
(13) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(14) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(15) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(16) Winey, K. I.; Thomas, E. L.; Fetters, L. Macromolecules 1992, 25, 2645.
(17) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(18) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491.
(19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(20) Chen, H.-L.; Huang, Y.-Y.; Hashimoto, T., manuscript in preparation.
(21) Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000.
(22) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(23) Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E. H., Eds.; Wiley: New York, 1989.
(24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987.

Chapter 5
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(5) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(6) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(7) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(8) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(9) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(10) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(11) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(12) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(13) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(15) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
(16) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.

(17) Loo, Y.-L.; Register, R. A.; Adamson, D. H. J. Polym. Sci., Polym. Phys. Ed. 2000, 38, 2564.
(18) Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(20) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(21) Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
(22) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetters, L. J. Macromolecules 1993, 26, 5796.
(23) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968.
(24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-Ray and Neutron Scattering; Plenum Press: New York, 1987.
(25) Cullity, B. D.; Stock, S. R Elements of X-Ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10.
(26) Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009.

Chapter 6
(1) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(2) Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci. Part B: Poly. Phys. 1999, 37, 2053.
(3) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(4) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(5) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(6) Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
(7) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J. Chainbundit, C. Macromolecules 2002, 35, 6937.
(8) Lee, W.; Chen, H.-L.; Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519.
(9) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
(10) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. 1994, 27, 2321.
(11) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(12) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(13) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
(14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(15) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr 1969, 10, 820.
(16) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553.
(17) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(18) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(19) Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Polymer 2001, 42, 9121.
(20) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(21) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(22) Muller, A. J.; Balsamo, V.; Arnal, M. L.; Jakob, T.; Schmalz. H.; Abetz, V. Macromolecules 2002, 35, 3048.
(23) Chen, H.-L.; Lin, S.-Y.; Huang, Y.-Y.; Chiu, F.-C.; Liou, W.; Lin, J. S. Macromolecules 2002, 35, 9434.
(24) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(25) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(26) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh. F.; Lotz, B.; J. Am. Chem. Soc. 2000, 122, 5957.
(27) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh. F.; Liu, L. Adv. Mater. 2002, 14, 31
(28) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(29) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(30) Nojima, S.; Nkano, H.; Ashida, T. Polymer 1993, 34, 4168.
(31) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(32) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(33) Balsamo, V; von Gyldenfeldt, F.; Stadler, R. Macromolecules 1999, 32, 1226.
(34) Huang, Y.-Y.; Chen, H.-L.; Li, H.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2003, 36, 282.
(35) Winey, K. I.; Thomas, E. L.; Fetter, L. J. Macromolecules 1992, 25, 2645.
(36) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(37) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(38) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
(39) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987.
(40) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922.
(41) Helfand, E.; Sapse, A. M. J. Chem. Phys. 1975, 62, 1327.
(42) Helfand, E.; Tagami, Y. J. Chem. Phys. 1972, 56, 3592.
Huang, Y.-Y. Ph. D. thesis, National Tsing Hua Univ., 2004.

Chapter 7
(1) Smith, P.; Manley, R. Macromolecules 1979, 12, 483.
(2) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(3) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(4) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(5) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C. Macromolecules 2002, 35, 6937.
(6) Shi, A.-C.; Noolandi, J. Macromolecules 1994, 27, 2936.
(7) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Macromolecules 1994, 27, 1562.
(8) Shi, A.-C.; Noolandi, J. Macromolecules 1995, 28, 3103.
(9) Zhao, J.; Majumdar, B.; Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules 1996, 29, 1204.
(10) Sakurai, S.; Irie, H.; Umeda, H.; Nomura, S.; Lee, H. H.; Kim, J. K. Macromolecules 1998, 31, 336.
(11) Court, F.; Hashimoto, T. Macromolecules 2001, 34, 2536.
(12) Court, F.; Hashimoto, T. Macromolecules 2002, 35, 2566.
(13) Prud’homme, R. E. J. Polym. Sci., Part B: Polym Phys. 1982, 20, 307.

(14) (a) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 577. (b) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 595. (c) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 1947.
(15) Balijepalli, S.; Schultz, J. M.; Lin, J. S. Macromolecules 1996, 29, 6601.
(16) The model structures are drawn based on the SAXS results of the isothermally crystallized diblock blends from which the PEO lamellar thickness was calculated to be ca. 10.8 nm. Assuming that crystalline stems orient perpendicular to the interface,17 this gives a once folded and triply folded chain structure for the shorter (extended chain length = 22.15 nm) and the longer (extended chain length = 47.47nm) PEO blocks in E80B481 and E170B102, respectively.
(17) DiMarzio, E. A.; Guttman, C. M.; Hoffman, J. D. Macromolecules 1980, 13, 1194.
(18) Whitmore, M. D.; Noolandi, J. Macromolecules 1988, 21, 1482.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top