跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林平和
研究生(外文):Pin-Ho Lin
論文名稱:供應鏈動態之行為及研究
論文名稱(外文):Dynamic behaivors of supply chain and control
指導教授:鄭西顯鄭西顯引用關係
指導教授(外文):Shi-Shang Jang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:供應鏈長鞭效應
外文關鍵詞:supply chainbullwhip effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是針對供應鏈管理(supply chain management)加以探討,以往這一領域上的研究者,都是將討論的重心,放在訂貨策略(ordering policy)之議題上,使得存貨成本(inventory cost)降低,以及如何降低所謂的長鞭效應(Bullwhip effect)上。而所謂長鞭效應的意義,就是在一供應鏈系統中,即使顧客需求(customer demand)變異性不大,但當需求的資訊往上游傳遞時,便會一層一層被扭曲誇大,造成越上游的廠商誤以為其下游的客戶需求變異性非常大,因而做出不正確的訂貨策略或錯誤的生產規劃,使得廠商蒙受極大的生意損失。所以如何避免長鞭現象的發生,就成為研究供應鏈管理的專家學者所關心且極欲解決的課題。
首先,將使用時間系列(time series)的觀念,建立一套動態的供應鏈系統之數學模式,來清晰描述供應鏈的運作行為。然後推導顧客需求之預測模式,並採用系統控制理論(system control theory),設計各種不同之控制器;因此本文將會對傳統控制器,例如比例控制器、比例積分控制器,甚至利用最小變異控制(MVC: minimum variance control)理論等,來推導適切訂貨預測器(ordering predictor),最後再應用頻率分析(frequency analysis)的觀念,調諧出最佳的訂貨方式,並以電腦程式模擬其訂貨與出貨情形,藉以分析長鞭效應,並評估存貨控制的成效。結果顯示不管是傳統控制器,或者利用最小變異控制的理論所衍導的訂貨策略,皆比大家熟悉的訂貨策略(order up to level),更能有效降低長鞭效應與做好存貨控制。尤其是最小變異控制器,不論顧客需求是固定的(stationary)或非固定的(non-stationary),其控管訂貨與存貨的效率都是最佳的。
誌謝
摘要
目錄 I
第一章 1
第二章 11
第三章 18
第四章 34
第五章 41
第六章 56
第七章 64
附錄A 65
參考文獻 73
1.Axsäter, S. “Simple evaluation of echelon stock (R,Q) policies for two-level inventory systems,” IIE Transactions, 29, (1997)661.

2.Axsäter, S. “Evaluation of installation stock based (R,Q)-policies for two-level inventory systems with Poisson demand,” Operations Research, 46(supp.3), (1998)s135

3.Axsater, S., and Zhang, W. A joint replenishment policy for multi-echelon inventory control. . International Journal of Production Economics 85 (1999)113-122

4.Axsäter, S. “Exact analysis of continuous review (R,Q) policies in two-echelon inventory systems with compound Poisson demand,” Operations Research, 48(5), (2000)686.

5.Axsäter, S. “Scaling down multi-echelon inventory problems,” International Journal of Production Economics, 71, (2001)255.

6.Beamon, B. M. Supply chain design and analysis: Models and methods. International Journal of Production Economics 55 (1998) 281-294.

7.Bordons, C., and Cueli, J. R. Predictive controller with estimation of measurable disturbance. Application to an olive mill. Journal of Process Control 14(2004) 305-315.

8.Box, G. E. P., Jenkins, G. M., and Reinsel, G.. C. Time series analysis: forecasting and control. (1994) Prentice Hall International.

9.Bradshaw, A. and Porter, B. Synthesis of control policies for a production-inventory tacking system. International Journal of Systems Science 6(1975) 225-232.


10.Cachon, G.., and Larivere, M. A. Capacity allocation using past sales: When to turn-and0earn. Management Science 45 (1999) 685-703.

11.Cachon, G..P. Managing supply chain demand variability with scheduled ordering policies. Management Science 45 (1999) 843-856.

12.Cetinkaya, S., and Lee, C.Y. Stock replenishment and shipment scheduled for vendor-managed inventory systems. Management Science 46(2000) 2170232.

13.Chen, F., Ryan, J.K., and Simchi-Levi, D The impact of exponential smoothing forecasts on the bullwhip effect. Naval Research Logistics 47 (2000a) 269-286.

14.Chen, F., Drezner, Z., Ryan, J. K., and Simchi-Levi, D. Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science 46 (2000b) 436-443.

15.DAmours S., Montreuil, B., Lefrancois, P., and Soumis, F. Networked manufacturing: The impact of information sharing. International Journal of Production Economics 58 (1999) 63-79.

16.Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D. R. Transfer function analysis of forecasting induced bullwhip in supply chains. International Journal of Production Economics 78 (2002) 133-144.

17.Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D. R. Measuring and avoiding the Bullwhip Effect: A Control Theoretic Approach. European Journal of Operational Research 147 (2003) 567-590.

18.Disney, S.M., and Towill, D. R. On the Bullwhip Effect and Inventory Variance Produced by an Ordering Policy. Omega: The International Journal of Management Science 31 (2003) 157-167.


19.Disney, S.M., and Towill, D.R. The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chain. International Journal of Production Economics 85 (2003) 199-215.

20.Ehrhardt, R. (s,S) policies for a dynamic inventory model with stochastic lead tine. Operations Research 32(1984)121-132.

21.Escudero, L. F., Galindo, E., Garcia, G., Gomez, E., and Sabau, V. Case study: Schumann, a modeling framework for supply chain management under uncertainty. European Journal of Operational Research 119(1999) 14-34.

22.Forrester, J.W. Industrial dynamics.(1961) Cambridge MA,USA:MIT Press.

23.Gessing, R., and Blachuta, M. Set point and identifiability in the closed loop with a minimum variance controller. Control Engineering Practice 4(1996) 665-670.

24.Gjerdrum, J., Shah, N., and Papageogiou, L.G.. A combined optimization and agent-Based approach to supply chain modeling and performance assessment. Production Planning & Control .12 (2001) 81-88.

25.Gunasekaren, A., Macbeth, DK., and Lamming, R. Modeling and analysis of supply chain management systems: an editorial overview. Journal of the operational research society 52(2000) 1112-1115.

26.Gupta, A., Maranas, C. D., and McDonald, C. M. Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Computers and Chemical Engineering 24 (2000)2631-2621.

27.Gupta, A., and Maranas, C. D. A two-stage modeling and solution framework for multi-site midterm planning under demand uncertainty: customer demand satisfaction and inventory management. Industrial Engineering Chemical Research. 39( 2000)3700-3813.

28.Harris, T. J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering 67(1989) 856-861.

29.Johansen S, G.., and Thorstenson, A. Optimal (r,Q) inventory policies with Poisson demands and lost sales: discounted and undiscounted cases. International Journal of Production Economics 47 (1996) 359-371.

30.Kaplan, R. S. A dynamic inventory model with stochastic lead time. Management Science. 16(1970) 491-507.

31.Lee, H. L., Padmanabhan,V., and Whang, S. The bullwhip effect in supply chains. Sloan Management Review 38.(1997a) 93-102.

32.Lee, H. L., Padmanabhan, V, and Whang, S. Information distortion in supply chain: The Bullwhip effect. Management Science 43 (1997b) 546-558.

33.Lee, H. L., So, K.C., and Tang, C. S. The value of information sharing in atwo level supply chain. Management Science 5 (2000) 628-643.

34.Mak, K.L., Bradshaw, A. and Porter, B. Stabilizability of production-inventory systems with retarded control policies. International Journal of Systems Science 7 (1976) 277-288.

35.Menden, C. A., Henning, G.. P., and Cerda. J. An MILP continuous-time approach to short-term scheduling of resource-constrained multistage flow-shop batch facilities. Computers and Chemical Engineering 25 (2001)701-711.

36.Metters, R. Quantifying the bullwhip effect in supply chains. Journal of Operational Management 15(1997) 89-100.

37.Orcun, S., Altinel, I. K., and Hortacsu, O. General continuous time models for production planning and scheduling batch processing plants: mixed integer linear program formulations and computational issues. Computers and Chemical Engineering 25 (2001)371-389.

38.Perea, E.,Grossmann, I., Ydstie, E. and Tahmassebi, T. Dynamic modeling and classical control theory for supply chain management. Computers and Chemical Engineering 24 (2000) 1143-1149.

39.Perea-López, E., Grossmann, I. E., Ydstie, B.E. and Tahmassebi, T. Dynamic modeling and decentralized control of supply chains. Industrial & Engineering Chemistry Research, 40 (2001) 3369-3383.

40.Porter, B. and Bradshaw, A. Modal control of production-inventory systems using piecewise-constant control policies. International Journal of Systems Science 5 (1974) 733-742.

41.Qin, S. J. Control performance monitoring- a review and assessment. Computers and Chemical Engineering 23 (1998) 173-186.

42.Ramdas, K. ,and Spekman R. E. Chain or shackles: Understanding what derives supply-chain performance. Interfaces 30 (2000) 3-21.

43.Seo, Y., Jung, S., and Hahm, J. Optimal reorder decision utilizing centralized stock information in a two-echelon distribution system. Computers & Operations research. 29(2002)171-193.

44.Soeterboek, R. Predictive Control: A Unified Approach. (1992) Prentice Hall International.

45.Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies. McGraw-Hill International Edition. (2000)

46.Thomas, D. J., Griffin P. M. Coordinated supply chain management. European Journal of Operational Research 94(1996) 1-15.

47.Towill, D.R. Dynamic analysis of an inventory and order based production control system. International Journal of Production Research 20 (1982) 671-687.

48.Towill, D.R. Industrial dynamics modeling of supply chains. Logistics information management. 9 (1996) 43-56.

49.Venkatesan, G. An algorithm for minimum variance control of a dynamic time-delay system to reduce product variability. Computers and Chemical Engineering 28 (2002) 229-239.

50.Vergin, R. C., and Barr, K. Building competitiveness in grocery supply through continuous replenishment planning: insights from the fields. Industrial Marketing Management 28 (1999) 145-153.

51.Xu, K., Dong, Y., and Evets, P. T. Toward better coordination of the supply chain. Transportation Research Part E. 37 (2001) 35-54
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊