跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林進益
研究生(外文):Chin I Lin
論文名稱:有機無機混成分子拓印高分子材料與生化感測器之應用
論文名稱(外文):Organic/Inorganic Hybrid Molecularly Imprinted Polymers And Biosensor Applications
指導教授:李 育 德
指導教授(外文):Yu Der Lee
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:181
中文關鍵詞:分子拓印有機無機混成生化感測器
外文關鍵詞:Molecular ImprintingOrganic/Inorganic HybridBiosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
大部份分子拓印(molecular imprinting)合成技術皆為有機材料為主,以有機無機混成材做為架構,辨識位址處則保留辨識效果較好的有機官能基,此種有機-無機共混成的方式所製備之分子拓印材料,不但保有原來有機材的易加工、低密度的優點,也同時兼有無機材料熱穩定、良好光學及機械性質等特性。材料穩定及低的製造成本,使得此種材料在工業級產品應用上面受到更多的注意。而使用溶膠凝膠合成技術為一快速方便隨意溫度皆可製備之方法。
本研究採用兩種不同分子拓印方法;非共價鍵方式及共價鍵方式建構識別性吸附孔洞。探討影響模版再鍵結因素,包括:模版/單體比率,官能性單體與造孔溶劑種類,反應溫度與時間等。並以咖啡因及其相似物,作為分子拓印材料選擇性吸附能力研究。初步研究結果顯示分子拓印高分子材料合成最佳組成,在表面封端情況下(end capped)以CAF:MAA:VTEOS:TEOS=1: 4 ~ 8: 20: 30 (mmol)時,達最佳選擇性與最佳吸附量。然而因表面封端將去除非辨識能力之silanol基,造成整體吸附量降低。在乙醇中膠化可使材料較透明,選擇性最佳,對theophyllline之親和力最低。分子拓印高分子材料對咖啡因溶液之吸附處理時間以一小時最佳,過長之吸附處理時間將降低其辨識能力,且六十分鐘達最大飽和吸附量,而溫度越低吸附量越大。
本研究另建立以共價型拓印為主的共聚合技術,以膽固醇(cholesterol)為模版分子(template molecule),利用溶膠凝膠聚合方式製備能辨識及吸附膽固醇的高分子顆粒材料。本研究選擇膽固醇做為模版分子,並且以cholesteryl (4-vinyl) phenyl carbonate與vinyltriethoxysilane(VTEOS)及3-(Methacryloyloxy) propyltrimethoxy silane(MPS)反應形成之共聚合高分子做為官能性單體。此共聚高分子與烷氧基金屬(metal alkoxide)進行溶膠-凝膠步驟後,生成外觀如陶瓷般,且具奈米通道之有機-無機共混成材料。另對聚合的方式、配方及條件作深入的實驗探討,以獲得高穩定性、高吸附容積的聚合物為目標。目前結果顯示吸附膽固醇達56%以上,在條件不同下將會有更佳的吸附效果。
在生物感測器應用研究上,本研究為利用分子拓印技術與半導體微粒(Semiconductor Nanoparticles,CdSe@ZnS)成型技術,將analyte(咖啡因caffeine) 拓印至高分子載體上,再利用螢光發光光譜(Photoluminescence) 技術偵測 analyte 之種類與濃度。由實驗結果發現量子點其放射光譜,深受所接受部位拓印模版分子所影響;在再鍵結實驗中,螢光發光光譜降低了五倍放射強度,此為量子點的放射光譜強度被抑制,所觀察到的抑制效應是由於螢光共振能的轉移,這是由於量子點和緊鄰鍵結分子的能量傳遞效應(fluorescence resonance energy transfer,FRET)。這種現象可以進行競爭性的分子拓印分析,因為當類似物(theobromine)分子出現時並不會影響半導體奈米微粒的光譜放射性質。相似的結果同樣顯示於另一類似物theophylline,證明拓印分子對於模版分子有高度的選舉性。在另外模版分子研究上,如尿酸等也具有同樣效果。
Most investigations for the preparation of imprinted polymers were carried out using purely organic polymers. Organic-inorganic hybrid materials have been found to be highly advantageous as they exhibit flexibility, low density and long shelf life with excellent optical and mechanical properties. The stability and low manufacturing cost makes these hybrid polymers amenable for industrial applications. A synthetic methodology based on sol-gel process, which is one of the fastest emerging fields of material chemistry, is a convenient one for material preparation from organic precursors at ambient temperature.
We have adopted two different approaches based on covalent and non-covalent bond interactions with the template molecule. Factors that influenced rebinding of the imprinted polymer including template/monomer ratio, functional monomers, porogenic solvents, temperature and time were explored. The binding selectivity of the MIPs for caffeine and its analogous structures were also discussed. A molar ratio of 1: 4 ~ 8: 20: 30 between CAF: MAAM: VTMOS: TEOS showed maximum of caffeine adsorption capacity whilst the corresponding end capped materials showed better selectivity also. However, the overall capacity reduced considerably because the lack of non-specific interactions due to surface silanol groups. Gel formed in presence of ethanol was more transparent in appearance with maximum selectivity and least affinity towards theophyllline. Prolonged treatment time of MIPs with caffeine solution led to reduction in recognition properties and the optimum was found to be one hour. Saturation of sites reached within 60 minutes. The MIPs showed a maximum adsorption capacity for caffeine at low temperature conditions. So it is advisable to conduct the incubation at low temperature for a maximum of one hour using end capped MIPs samples.
For covalent bond interactions with the template molecule, we aim at establishing the technology of polymerization via covalent imprinting, in which cholesterol was employed as the template. The sol-gel polymerization of the complex formed from cholesterol-bound functional monomer and cross-linker were investigated experimentally in detail. The state of the art was achieved by using cholesterol as the template molecule. Several types of cholesteryl (4-vinyl) phenyl carbonate copolymers with vinyltriethoxysilane (VTEOS) or 3-(Methacryloyloxy) propyltrimethoxy silane (MPS) were prepared for cholesterol imprinting. The aforementioned copolymers subjected to sol-gel process with metal alkoxide was generated a hither-to-unknown series of organic - inorganic hybrid materials with nanometer-order ceramic texture. Every effort on the study of polymerization conditions was made to prepare an ideal MIPs, which has a higher stability and adsorption capacity (56%). The technology developed in this study will be very helpful for marketing the molecularly imprinted polymers.
In biosensor application study we have demonstrated a novel method for molecular sensing. Synthetic host molecules were made from functionalized CdSe@ZnS nanoparticles by a molecular imprinting process(CdSe@ZnS/MIP-caffeine). The re-binding experiment of Qdot-MIPs showed a five-fold reduction in emission intensity in its photoluminescence behavior. The observed quenching effects are due to fluorescence resonance energy transfer (FRET), which involves radiationless energy transfer that occurs between QDots and tightly bound guest molecule. The Qdot-MIPs also show a very good selectivity between caffeine and its analogues. The emission intensity of Qdot-MIP is found to be unaffected after the re-binding experiment with theobromine. A similar behavior was observed with theophylline, analogues of caffeine, also. The imprinted sites are highly selective for the template molecule. This was consistent and highly reproducible in the case of other print molecules like uric acid, etc.
摘要 I
Abstract IV
誌謝 VIII
目錄 IX
圖目錄 XVII
表目錄 XXII

第一章 緒論 1

第二章 文獻回顧、相關原理與應用 4
2.1分子拓印技術 4
2.1.1 分子拓印原理 4
2.1.2 分子拓印高分子的製備 11
2.1.2.1目標分子選擇 11
2.1.2.2官能性單體 13
2.1.2.3交聯劑 14
2.1.2.4分子拓印高分子結構型態 15
2.1.2.5溶劑 17
2.1.2.6合成實例 18
2.1.2.7分子拓印之應用 23
2.1.2.7.1 分子拓印色層分析(MIC) 24
2.1.2.7.2 抗體/受體結合模擬物 25
2.1.2.7.3 催化/合成的應用 25
2.1.2.7.4 仿生物感應器元件 26
2.1.2.8 分子拓印聚合物之特性 27
2.2有機無機混成(Organic-inorganic Hybrid Materials)分子拓印高分子材料 29
2.2.1 有機無機混成分子辨識(molecular recognition)材料 29
2.2.2 溶膠凝膠製程技術 34
2.2.2.1 溶膠─凝膠化學 34
2.2.2.2 溶膠─凝膠分子拓印 40
2.2.2.3 微孔矽膠共價性分子拓印 45
2.3仿生感測器(Biomimetic Sensors) 50
2.3.1 分子拓印仿生感測器 50
2.3.1.1 分子拓印感應器之發展 50
2.3.1.2氯黴素之光學偵測 53
2.3.1.3 用於莫多草淨(Atrazine)之電導性感應器 57
2.3.1.4三氮雜苯(Triazine)及唾液酸(Sialic acid)之螢光偵測 59
2.3.1.5用液相色層分析儀來偵測睪丸固酮(Testosterone) 60
2.3.1.6未來的展望 60
2.3.2 分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 62
2.3.2.1半導體微結晶作為螢光生物性標籤 62

第三章 研究動機與目的 73

第四章 實驗藥品、設備及實驗步驟 77
4.1 實驗藥品 77
4.1.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 77
4.1.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 78
4.1.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 79
4.2 實驗設備 80
4.3 實驗方法與流程 81
4.3.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 81
4.3.1.1研究概述 81
4.3.1.2研究範圍 84
4.3.1.3 分子拓印聚合反應 85
4.3.1.3.1無溶劑高分子聚合法(neat copolymerization) 85
4.3.1.3.2溶液共聚和反應(Solution copolymerization.) 85
4.3.1.3.3表面Si-OH的覆蓋(End capping of surface silanol groups) 86
4.3.1.3.4以高效能液相管柱層析法評估MIPs的吸附率及辨識能力 89
4.3.1.3.5 Imprint Fact α與Selectivit β 89
4.3.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 91
4.3.2.1 研究概述 91
4.3.2.2 4-vinylphenol的合成 92
4.3.2.3 cholesteryl (4-vinyl) phenyl carbonate合成 92
4.3.2.4 高分子聚合與溶膠-凝膠反應 93
4.3.2.5 模版(template)分子的移除 97
4.3.2.6 膽固醇之吸附實驗 97
4.3.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 99
4.3.3.1分子拓印高分子/半導體微粒合成設計 99
4.3.3.2奈米晶體粒子製備及表面官能化改質 105
4.3.3.2.1製備CdSe半導體奈米晶體粒子 105
4.3.3.2.2 製備CdSe(ZnS)核殼奈米晶體粒子 105
4.3.3.2.3以4-Vinylpridine進行CdSe/ZnS奈米微粒表面官能化 106

第五章 實驗結果與討論 107
5.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 107
5.1.1無溶劑高分子聚合法(neat copolymerization)(MAA系統) 107
5.1.1.1 聚合觸媒添加量改變對Caffeine的影響 107
5.1.1.2 Silane 組合的改變,對Caffeine吸附效果之影響 109
5.1.1.3 H2O及HCl改變對Caffeine吸附效果之影響 110
5.1.1.4 攪拌時間與溫度對MIPs吸附率之影響 113
5.1.2 溶液共聚和反應(Solution copolymerization.)(MAAM系統) 114
5.1.2.1製備MAAM系統之分子拓印高分子(MIPs)溶液共聚合反應 114
5.1.2.2 End capping 對分子辨識能力之影響 116
5.1.2.3 咖啡因模版之影響 119
5.1.2.4 造孔劑(Porogenic Solvent)效應 120
5.1.2.5 溫度與時間對吸附性之影響 121
5.1.2.6 SEM結構觀測 122
5.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 123
5.2.1 4-Vinylphenol之合成 123
5.2.1.1 微分掃瞄熱分析儀鑑定 123
5.2.1.2 氫核磁共振圖譜鑑定(1H-NMR) 124
5.2.2 C-4-V-Pc之合成 125
5.2.2.1 C-4-V-Pc之紅外線光譜儀(IR)鑑定 126
5.2.2.2 C-4-V-Pc之核磁共振光譜鑑定 127
5.2.2.2.1 氫核磁共振光譜儀(1H-NMR) 127
5.2.2.2.2 碳核磁共振光譜儀(13C-NMR) 128
5.2.2.3 C-4-V-Pc之微分掃瞄熱分析(DSC)鑑定 130
5.2.2.4 Cholesteryl (4-vinyl)phenyl carbonate之元素分析(EA)鑑定 130
5.2.3與含雙鍵矽氧烷單體之共聚合 131
5.2.3.1 C-4-V-Pc與V-TEOS之共聚合反應 131
5.2.3.2 C-4-V-Pc與MPS之共聚合反應 134
5.2.3.2.1 一步聚合反應 135
5.2.3.2.2 二步聚合反應 139
5.2.3.3溶膠-凝膠反應 140
5.2.3.4 高效能液相層析儀分析 140
5.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 143
5.3.1以4-Vinylpridine進行CdSe/ZnS奈米微粒表面官能化 143
5.3.2 CdSe/ZnS/4-Vinylpyridine/EGDMA/Uric Acid-MIP 144
5.3.3 CdSe/ZnS/4-Vinylpyridine/EGDMA-CAF-MIP 146
5.3.4 再鍵結實驗(Re-binding experiment) 147
5.3.5 PL spectra of CdSe/ZnS/4-VP/EGDMA-MIP:移除模版分子之前、後光譜研究 148
5.3.6 CdSe/ZnS/4-VP/EGDMA-MIP 對咖啡因之辨識效果 150
5.3.7 CdSe/ZnS/4-VP/EGDMA-MIP : CAF vs Theobromine 之選擇性鍵結能力 151
5.3.8 CdSe/ZnS/4-VP/EGDMA-MIP : CAF vs Theophylline 之選擇性鍵結能力 152
5.3.9 拓印L-Cysteine使用CdSe/ZnS當為螢光發光團 153
5.3.9.1 CdSe/ZnS/4-VP/EGDMA-L-Cysteine MIPs合成反應 153
5.3.9.2 CdSe/ZnS/4-VP/EGDMA-L-Cysteine MIPs在Re-binding 實驗 153
5.3.10拓印Estriol使用CdSe/ZnS當為螢光發光團 156
5.3.10.1 CdSe/ZnS/4-VP/EGDMA-Estriol MIPs合成反應 156
5.3.10.2 CdSe/ZnS/4-VP/EGDMA-Estriol MIPs在Re-binding 實驗 156
5.3.11 結果一覽總表 158

第六章 結論 159

參考文獻 161

作者自述 180
[ 1] L. Pauling, J. Am. Chem. Soc. 62, 2643 (1940)
[ 2] L. Pauling, Chem. Eng. News. 10, 1375 (1946)
[ 3] M.W. Poljakow, J. Phys. Chem. 2, 799 (1931)
[ 4] F.H. Dickey, Proc. Nat. Acad. Sci. 35, 227 (1949)
[ 5] F.H. Dickey, J. Phys. Chem. 59, 659 (1955)
[ 6] R. Curti, U. Colombo, F. Clerici, Gazz. Chim. Ital. 82, 491 (1952)
[ 7] E.I. Klabunovskii, A.E. Agronomov, L.M. Volkova, A.A. Balandin, Izv. Akad. Nauk SSSr, Otd. Khim. Nauk 228 (1963)
[ 8] E.I. Klabunovskii, A.E. Agronomov, Byul. Izobret. I Tovarnykh Znakov 16, 13 (1963)
[ 9] H. Erlenmeyer, H. Bartels, Helv. Chim. Acta 47, 47 (1964)
[10] H. Erlenmeyer, H. Bartels, Helv. Chim. Acta 49, 1621 (1966)
[11] R.G. Haldeman, P.H. Emmett, J. Phys. Chem. 59, 1039 (1955)
[12] G. Wulff, A. Sarhan, Angew. Chem. 84, 364 (1972)
[13] J. Steinke, D.C. Scherrington, I.R. Dunkin, Adv. Polym. Sci. 124, 81 (1995)
[14] G. Wulff, Angew. Chem. 107, 1958 (1995)
[15] H. Bartels, B. Prijs, Adv. Chromatogr. 11, 115 (1974)
[ 16] H. Bartels, J. Chromatogr. 30, 113 (1967)
[ 17] G. Wulff, T. Gross, R. Scho¨ nfeld, Angew. Chem. Int. Ed. Engl. 36, 1962 (1997)
[18] K. Morihara, S. Kurihara, J. Suzuki, Bull. Chem. Soc. Jpn 61, 3991 (1988)
[19] K. Morihara, M. Kurokawa, Y. Kamata, T. Shimada, J. Chem. Soc., Chem. Commun. 358 (1992)
[20] K. Morihara, Bull. Chem. Soc. Jpn 67, 748 (1994)
[21] K. Morihara, M. Kurokawa, Y. Kamata, T. Shimada, J. Chem. Soc., Chem. Commun. 358 (1992)
[22] G. G. Kaiser, J.T. Anderson, Fres. J. Anal. Chem. 342, 834 (1992)
[23] M. Hunnius, A. Rufinska, W.F. Maie, Microporous and Mesoporous Materials 29, 389-403 (1999)
[24] J. Heilmann, W.F. Maier, Angew. Chem. 106, 491 (1994)
[25] W.F. Maier, W. BenMustapha, Catal. Lett. 46, 137 (1997)
[26] W.F. Maier, F.M. Bohnen, J. Heilmann, S. Klein, H.-C. Ko, M.F. Mark, S. Thorimbert, I. Tilgner, M. Wiedorn, in J.F. Harrod, R.M. Laine ( Eds.), Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, 1995, p. 27.
[27] F.M. Bohnen, Ph.D. thesis, University at GH Essen, Essen, 1996.
[28] C. Pinel, P. Loisil, P. Gallezot, Adv. Mater. 9, 582 (1997)
[29] F. S. Sharon, A. David, M. Sharon, Chem. Mate. 15(19), 3607 (2003).
[30] K. Toyoki, S. W.Lee, Analy. Chim. Acta 504(1), 1 (2004)
[31] M. Sharon, Z. Amalya, T. Iva, M. Daniel, Analy. Chem. 76(1), 120 (2004)
[32] F. L. Dickert, K. Halikias, O. Hayden, L. Piu, R. Sikorski, Sensors and Actuators, B: Chemical, 76(1-3), 295-298 (2001)
[33] F. L. Dickert, P. A. Lieberzeit, O. Hayden, R. Bindeus, K. J. Mann, C. Haderspock, Materials Research Society Symposium - Proceedings 776, 37-24 (2003)
[34] Brinker, J.; Scherer, G.; Sol-Gel Science; Academic Press; New York, 1989.
[35] Hench, L. L.; West, J. K. Chem. Rev. 90, 33-72 (1990)
[36] Avnir, D.; Braun, S.; Lev, O., Ottolenghi, M. Chem. Mater. 6, 1605-1614 (1994)
[37] Lev, 0., Tsionsky,M.;Rabinovich,L.;Glezer.V.; Sampath, S.; Pankratov, I.: Gun, J. Anal. Chem. 67, 22A-30A (1995)
[38] Avnir, D.: Brauns, S.; Lev, O.; Levy, D.; Ottolenghi, M. In; Sol-Gel Optics. Processing and Applications; Klein, L. C., Ed. Kluwer Academic Publications, Massachusetts, 1994.
[39] Avnir, D. Acc. Chem. Res. 28, 328-334 (1995)
[40] Woltbeis, O. vS.; Reisfeld, R.; Oehme, I. Structure and Bonding, 85, 51-98 (1996)
[41] Lin, J.; Brown, C. W. Trends in Anal. Chem. 14(4), 200-211 (1997)
[42] Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V.; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Chem. Mater. 9, 2354-2375 (1997)
[43] Anvir, D.; Klein, L. C.; Levy, D.; Schubert, U.; Wojcik, A. B. The Chemistry of Organic Silicon Compounds, Vol. 2. Rappoport, Z. and Apeloig, Y., Eds., John Wiley & Sons, 1998, pp. 2317-2362.
[44] Walcarius, A. Electronanalysis 10, 1217-1235 (1998)
[45] (a) Dunn, B.; Miller, J. M.; Dave, B. C.; Valentine, J. S.; Zink, J. I. Acta Mater. 46, 737-741 (1998), (b) Lan, E. H.; Dave, B. C.; Fukuto, J. M.; Dunn, B.; Zink, J. I.; Valentine, J. S. J. Mater. Chem. 9, 45-53 (1999)
[46] Anvir, D.; Levy, D.; Reisfeld, R. J. Phys. Chem. 88, 5956-5959 (1984)
[47] (a)Schmidt, H. Mater. Res. Soc. Symp. Proc. 32, 327-335 (1984), (b) Schmidt, H. J. NonCrystalline Solids 73, 681-691 (1985), (c) Philipp, G.; Schmidt, H. J. Non-Crystalline Solids 63, 283-292 (1984)
[48] Schmidt, H. J. Sol-Gel Sci. Technol. 1, 217-231 (1994)
[49] Sanchez, C.; Ribot, F. New J. Chem. 18, 1007-1047 (1994)
[50] Schubert, U.; Husing, N.; Lorenz. Chem. Mater. 7, 2010-2027 (1995)
[51] Wen, J.; Wilkes, G.L. Chem. Mater. 8, 1667-1681 (1996)
[52] Collinson, M. M. Mikrochim. Acta 129, 149-165 (1998)
[53] Schubert, U. New. J. Chem. 18, 1049-1058 (1994)
[54] Blum, J.; Avnir, D.; Schumann, H. Chemtech. 32-38 (1999)
[55] Brinker, C. J.; Raman, N. K.; Logan, M. N.; Sehgal, R.; Assink, R-A.; Hua, D-W.; Ward, T.L. J. Sol-Gel Sci. Techn. 4, 117-133 (1995)
[56] Gvishi, R.; Narang, U.; Ruland, G.; Kumar, D. N.; Prasad, P.N. Appl. Organometallic Chem. 11, 107-127 (1997)
[57] Levy, D.; Esquivias, L. Adv. Mater. 7, 120-129 (1995)
[58] Dunn, B.; Zink, J. I. J. Mater. Chem. 1, 903-913 (1991)
[59] Levy, D. Chem. Mater. 9, 2666-2670 (1997)
[60] Dunn, B.; Farrington, G. C.; Katz, B. Solid State Ionics 70/71, 3-10 (1994)
[61] Skaarup, S.; West, K.; Zachau-Christiansen, B.; Popal, M.; Kappel, J.; Kron, J.; Eichinger, G.; Semrau, G. Electrochimica Ata 43, 1589-1592 (1998)
[62] (a)Brinker, C.J.J. Non Cryst. Solids 100, 31-50 (1988) (b)Brinker, C. J., Scherer, G. W. In; Ultrastructure Processing of Ceramics, Glasses, and Composites. Hench, L. L. and Ulrich, D. R. Eds., John Wiley; 43-49 (1984)
[63] Corriu, R. J. P.; Leclercq, D. Angew. Chem. Int. Ed. Engl. 35, 1420-1436 (1996)
[64] Buckley, A. M.; Greenblatt, M. J. Chem. Ed. 71, 599-602 (1994)
[65] Osterholtz, F. D.; Pohl, E. R. J. Adhesion Sci. Technol. 6, 127-149 (1992)
[66] Schmidt, H.; Scholze, H.; Kaiser, A. J. Non-Crystalline Solids 63, 1-11 (1984)
[67] Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 8, 1682-1701 (1996)
[68] Kriz, D.; Ramstrom, O.; Mosbach, K. Anal. Chem. 345A-349A (1997)
[69] Mayes A. G.; Mosbach, K. Trends Anal. Chem. 16, 321-332 (1997)
[70] Sellergren, B. Trends Anal. Chem. 16, 310-320 (1997)
[71] Mallik, S.; Plunkett, S. D.; Dhal, P. K.; Johnson, R. D.; Pack, D.; Shnek, D.; Arnold, F. H. New J. Chem. 18, 299-304 (1994)
[72] Dickey, F. H. Proc. Natl. Acad. Sci, U.S.A. 35, 227-229 (1949)
[73] Dickey, F. H. J. Phys. Chem. 59, 695-707 (1955)
[74] Morrison, J. L.; Worsley, M.; Shaw, D. R.; Hodgson, G. W. Can. J. Chem. 37, 1986-1995 (1959)
[75] Dai, S.; Shin, Y. S.; Barnes, C. E.; Toth, L. M. Chem. Mater. 9, 2521-2525 (1997)
[76] Pinel, C.; Loisil, P. Gallezot, P. Adv. Mater. 9, 582-585 (1997)
[77] Sasaki, D. Y.; Rush, D. J.; Daitch, C. E.; Alam, T. M.; Assink, R. A.; Ashley, C. S.; Brinker J. C.; Shea, K. J. In: Molecular and Ionic Recognition with Imprinted Polymers, ACS Symposium Series 703, Bartsch, R. A.; Maeda, M., Eds., 1998, pp. 312-323.
[78] (a) Makote, R.; Collinson, M. M. Chem. Mater. 10, 2440-45 (1998) (b) Makote, R.; Collinson M. M. Chem. Comm. 3, 425 (1998)
[79] Glad, M.; Norrlow, O.; Sellergren, B.; Siegbahn, N.; Mosbach, K. J. Chromatography 347, 11-23 (1985)
[80] Hwang, K-O., Sasaki, T. J. Mater. Chem. 8, 215-356 (1998)
[81] Morihara, K. In: Molecular and Ionic Recognition with Imprinted Polymers, ACS Symposium Series 703, Bartsch, R. A.; Maeda, M., Eds. 1998, pp. 300-313.
[82] Lulka, M. F.; Chambers, J. P.; Valdes, E. R.; Thompson, R. G.; Valdes, J. J. Anal. Letters 30(13), 2301-2313(1997)
[83] A. Katz, M. E. Davis, Nature 403, 286 (2000)
[84] C.Y. Chen, I. Karube, Curr. Opin. Biotechnol. 3, 31 (1992)
[85] I. Karube, Y. Nomura, Y. Arikawa, Trends Anal. Chem. 14, 295 (1995)
[86 ] K.J. Shea, Trends Polym. Sci. 2, 66 (1994)
[87] G. Wulff, Angew. Chem. Int. Ed. Engl. 34, 1812 (1995)
[88] K. Mosbach and O. Ramstroë m, Biotechnology 14, 163 (1996)
[89] T. Takeuchi, J. Matsui, Acta Polym. 47, 471 (1996)
[90] C.J. Percival, S. Stanley, M. Galle, A Braithwaite, M. I. Newton, G. McHale, W. Hayes, Analy. Chem. 73(17), 4225-4228 (2001)
[91] K. Hirayama, Y. Sakai, K. Kameoka, J Appl. Poly. Sci 81(14), 3378-3387 (2001)
[92] S. Subrahmanyam, S. A. Piletsky, A. P. F. Turner, Sensor Review 21(4), 292-296 (2001)
[93] K. Hirayama, Sensors and Actuators, B: Chemical 86(1), 20-25 (2002)
[94] N. P. Moral, A. G. Mayes, Mater. Res. Soc. Symp. - Proceedings 723, 61-66 (2002)
[95] A. Merkoi, S. Alegret, TrAC - Trends in Analytical Chemistry, 21(11), 717-725 (2002)
[96] F. L. Dickert, P. A. Lieberzeit, S. Gazda-Miarecka, K. Halikias, R. Bindeus, Mate. Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 71-77 (2003)
[97] R. Shoji, T. Takeuchi, I. Kubo, Analy. Chem 75(18), 4882-4886 (2003)
[98] G. M. Murray, G. E. Southard, Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 61-70 (2003)
[99] K. A. Marx, Biomacromolecules, 4(5), 1099-1120 (2003)
[100] Y. C. Chen, Z. Wang, M. Yan, S. A. Prahl, Mate. Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 35-39 (2003)
[101] T. Y. Lin, C. H. Hu, T. C. Chou, Biosensors and Bioelectronics, 20(1), 75-81 (2004)
[102] H. C. Huang, C. I. Lin, A. K. Joseph, Y. D. Lee, Journal of Chromatography A, 1027(1-2), 263-268 (2004)
[103] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, TrAC - Trends in Analytical Chemistry, 23(1), 36-48 (2004)
[104] R. Levi, S. McNiven, S.A. Piletsky, A. Rachkov, S.-H. Cheong, K. Yano, I. Karube, Anal. Chem. 69, 2017 (1997)
[105] S. McNiven, M. Kato, K. Yano, I. Karube, Anal. Chim. Acta 365, 69 (1998)
[106] S. A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, Yu.P. Parhometz, A.V. El'skaya, Biosens. Bio-electron. 10, 959 (1995)
[107] S. A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El'skaya, R. Levi, I. Karube, G. Wulff, Macromolecules 31, 2137 (1998)
[108] S. A. Piletsky, E.V. Piletskaya, A.V. El'skaya, R. Levi, K. Yano, I. Karube, Anal. Lett. 30, 445 (1997)
[109] S. A. Piletsky, E.V. Piletskaya, K. Yano, A. Kugimiya, A.V. Elgersma, R. Levi, U. Kahlow, T. Takeuchi, I. Karube, T.I. Panasyuk, A.V. El'skaya, Anal. Lett. 29, 157 (1996)
[110] S. H. Cheong, S. McNiven, A. Rachkov, R. Levi, K. Yano, I. Karube, Macromolecules 30, 1317 (1997)
[111] S. H. Cheong, A. Rachkov, J. K. Park, K. Yano, I. Karube, J. Polym. Sci. A: Polym. Chem. 36, 1725 (1998)
[112] J. H. G. Steinke, I. R. Dunkin, D. C. Sherrington, Macromolecules 29, 407 (1996)
[113] M. E. Cooper, B. P. Hoag and D.L. Gin, Polym. Prep. 38, 209 (1997)
[114] D. Kriz, O. Ramstroë m, A. Svensson and K. Mosbach, Anal. Chem. 67, 2142 (1995)
[115] F.L. Dickert, H. Besenboë ck and M. Tortschanoff, Adv. Mater. 10, 149 (1998)
[116] P. Turkewitsch, B. Wandelt, G.D. Darling, W.S. Powell, Anal. Chem. 70, 2025 (1998)
[117] M.F. Lulka, J.P. Chambers, E.R. Valdes, R.G. Thompson, J. J. Valdes, Anal. Lett. 30, 2301 (1997)
[118] D. Kriz, L. I. Andersson, M. Khayyami, B. Danielsson, P. O. Larsson, K. Mosbach, Biomimetics 3, 81 (1995)
[119] S.A. Piletsky, Y.P. Parhometz, N.V. Lavryk, T.L. Panasyuk, A.V. El'skaya, Sens. Actuators B 18(19), 629 (1994)
[120] L.I. Andersson, A. Miyabayashi, D.J. O'Shannessy, K. Mosbach, J. Chromatogr. 516, 323 (1990)
[121] E. Hedborg, F. Winquist, I. Lundstroë m, L.I. Andersson and K. Mosbach, Sens. Actuators A 37-38, 796 (1993)
[122] D. Kriz, K. Mosbach, Anal. Chim. Acta 300, 71 (1995)
[123] F.L. Dickert, P. Forth, P. Lieberzeit, M. Tortschanoff, Fresenius J. Anal. Chem. 360, 759 (1998)
[124] A.L. Jenkins, O.M. Uy, G.M. Murray, Anal. Commun. 34221 (1997)
[125] G. Chen, Z. Guan, C. T. Chen, L. Fu, V. Sundaresan, F.H. Arnold, Nature Biotechnol. 15, 354 (1997)
[126] E.P.C. Lai, A. Fafara, V.A. VanderNoot, M. Kono, B. Polsky, Can. J. Chem. 76, 265 (1998)
[127] J. Matsui, Y. Tachibana and T. Takeuchi, Anal. Commun. 35, 225 (1998)
[128] O. Hayden, F. L. Dickert, Adv. Mater. 13(19), 1480-1483 (2001)
[129] F. L. Dickert, O. Hayden, P. Lieberzeit, C. Haderspoeck, R. Bindeus, C. Palfinger, B. Wirl, Synthetic Metals 138(1-2), 65-69 (2003)
[130] O. Hayden, R. Bindeus, F. L. Dickert, Science and Technology 14(11), 1876-1881 (2003)
[131] O. Hayden, R. Bindeus, C. Haderspock, K. J. Mann, B. Wirl, F. L. Dickert, Sensors and Actuators, B: Chemical 91(1) 316-319 (2003)
[132] M. Roederer, Cytometry 29, 328 (1997)
[133] E. Schröck, Science 273, 494 (1996)
[134] A. Waggoner, Methods Enzymol. 246, 362 (1995)
[135] Attempts with energy transfer-sensitized probes and phycobiliprotein-conjugated dye molecules have been somewhat successful, but the efficiency of energy transfer is lower than the intrinsic excitation and emission of a dye molecule [ J. Y. Ju, C. C. Ruan, C. W. Fuller, A. N. Glazer, R. A. Mathies, Proc. Natl. Acad. Sci. U.S.A. 92, 4347 (1995); M. Roederer, A. B. Kantor, D. R. Parks, L. A. Herzenberg, Cytometry 24, 191 (1996)].
[136] A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)
[137] S. Miltenyi, W. Muller, W. Weichel, A. Radbruch, Cytometry 11, 231 (1990)
[138] P. M. Lackie, Histochem. Cell Biol. 106, 9 (1996)
[139] R. Hermann, P. Walther, M. Muller, ibid., p. 31
[140] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 277, 1078 (1997)
[141] A. P. Alivisatos, Nature 382, 609 (1996); C. A. Mirkin, R. L. Letsinger, R.C. Mucic, J. J. Storhoff, ibid., p. 607
[142] H. B. Beverloo, A. van Schadewijk, S. van Gelderen-Boele, H. J. Tanke, Cytometry 11, 784 (1990)
[143] A. Eychmuller, A. Mews, H. Weller, Chem. Phys. Lett. 208, 59 (1993)
[144] M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)
[145] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)
[146] C. B. Murray, D. J. Norris, M. G. Bawendi, ibid. 115, 8706 (1993)
[147] X. G. Peng, J. Wickham, A. P. Alivisatos, ibid. 120, 5343 (1998)
[148] L. M. Lizmarzan, M. Giersig, P. Mulvaney, Langmuir 12, 4329 (1996)
[149] M. A. CorreaDuarte, M. Giersig, L. M. LizMarzan, Chem. Phys. Lett. 286, 497 (1998)
[150] M. Nirmal, Nature 383, 802 (1996)
[151] For recent books, see L.J.Kricka, Ed., Nonisotopic Probing, Blotting, and Sequencing (Academic Press, New York, 1995);. P. G. Issac, Ed., Protocols for Nucleic Acid Analysis by Nonradioactive Probes (Humana, Totowa, NJ, 1994); E.P.Diamandis and T. K. Christopoulos, Eds., Immunoassay (Academic Press, New York, 1996)
[152] A.P.Alivisatos, Science 271, 933 (1996); J. Phys. Chem. 100, 13226 (1996)
[153] L. E. Brus, Appl. Phys. A 53, 465 (1991); W. L. Wilson, P. F. Szajowski, L. E. Brus, Science 262, 1242 (1993)
[154] A. Henglein, Chem. Rev. 89, 1861 (1989); H. Weller, Angew. Chem. Int. Ed. Engl. 32, 41 (1993)
[155] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)
[156] J. E. Bowen Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994)
[157] M. A. Hines and P. Guyot-Sionnest, ibid. 100, 468 (1996)
[158] C. B. Murray, C. R. Kagan, M. G. Bawendi, Science 270, 1335 (1995)
[159] R. P. Andres, ibid. 273, 1690 (1996)
[160] J. R. Heath, J. Phys. Chem. 100, 3144 (1996); C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, Science 277, 1978 (1997)
[161] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 382, 607 (1996)
[162] A. P.Alivisatos, ibid., p. 609
[163] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, ibid. 370, 354 (1994)
[164] B. O. Dabbousi, M. G. Bawendi, O. Onotsuka, M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995)
[165] B. O. Dabbousi, J. Phys. Chem. B 101, 9463 (1997)
[166] G. T.Hermanson, Bioconjugate Techniques (Academic Press, New York, 1996)
[167] W. C.W.Chan and S. Nie, unpublished data.
[168] R. M. Dickson, A. B. Cubitt, R. Y. Tsien, W. E. Moerner, Nature 388, 355 (1997)
[169] H. P. Lu and X. X. Xie, ibid. 385, 143 (1997)
[170] D. A. Vanden, Science 277, 1074 (1997)
[171] M. Nirmal, Nature 383, 802 (1996) ; S. A. Empedocles, D. J. Norris, M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996)
[172] C. I. Lin, A. K. Joseph, C. K. Chang, Y. C. Wang, Y. D. Lee, Analytica Chimica Acta 481, 175–180 (2003)
[173] C. I. Lin, A. K. Joseph, C. K. Chang, Y. D. Lee, Journal of Chromatograpy A 1027, 259–262 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top