跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許嘉紋
研究生(外文):Chia-Wen Hsu
論文名稱:含橋式聚有機矽氧烷環氧樹脂奈米複合材料之合成與性質研究
論文名稱(外文):Preparation and Properties of Epoxy-Bridged Polyorganosiloxane NanoComposite
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi Ma
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:140
中文關鍵詞:環氧樹脂聚有機矽氧烷奈米複合材料
外文關鍵詞:EpoxyPolyorganosiloxaneNanocomposite
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1025
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在利用環氧樹脂(DGEBA type epoxy resin)與三種含有不同烷氧基數的胺烷氧基矽烷化合物(aminoalkylalkoxysilane)反應,形成中間為有機鏈段兩端帶有烷氧基的前趨物,搭配不同催化劑,以直接硬化的方式進行交聯形成有機無機混成材料,比較不同烷氧基和催化劑的效應,並與純環氧樹脂比較熱性質和機械性質。
本研究選用偶合劑分別是3-aminopropyltriethoxysilane (APTES),3-aminopropylmethyldiethoxysilane (APMDS),和3-aminopropyldimethylethoxysilane (APDES),與環氧樹脂的環氧基反應形成中間為有機鏈段兩端帶有烷氧基的前趨體,為Reactive Epoxy-APTES precursor,Reactive Epoxy-APMDS precursor和Reactive Epoxy-APDES precursor三種系統,利用FTIR監測反應,由913cm-1環氧基的特性吸收峰消失之情形確認反應完成,反應時間約五小時,利用1H NMR鑑定前趨物烷氧基存在,確定前趨物之結構以及其反應性。
利用DSC動態分析瞭解三種前趨物之反應溫度範圍,以150℃加熱進行硬化形成有機無機混成材料。以29Si CP/MAS NMR鑑定其材料鍵結結構和交聯程度 (Degree of Condensation)比較未添加催化劑與添加dibutyltindilaurate (DBTDL),tetrabutylamonium hydroxide (NBu4.OH)及boron trifluoride monoethylamine (BF3.MEA)於前趨體所形成之有機無機材料性質,交聯程度的大小主要與反應官能基反應時的立體障礙和催化劑的使用有關。在Epoxy/APTES Bridged Polyorganosiloxane (Epoxy/APTES)系統中,未添加催化劑為76.4%,添加BF3.MEA可達到最高91.4%的交聯度;在Epoxy/APMDS Bridged Polyorganosiloxane (Epoxy/APMDS)系統中,未添加催化劑為72.4%,添加BF3.MEA可達到最高88.0%的交聯度;在Epoxy/APDES Bridged Polyorganosiloxane (Epoxy/APDES)系統中,未添加催化劑為77.0%,添加NBu4.OH可達到最高89.0%的交聯度。
由熱重分析結果可知,交聯度越高熱裂解溫度越高,Si-O-Si的高鍵能可提升材料之耐熱性;Epoxy/APTES系統中,未加催化劑之Td5為270.3℃,添加BF3.MEA 的Td5為354.5℃,增加84.2℃;Epoxy/APMDS系統中,未加催化劑Td5為347.9℃,添加BF3.MEA 的Td5為350.8℃,增加3℃;Epoxy/APDES系統中,未加催化劑Td5為326.5℃,添加NBu4.OH的Td5為343.2℃,增加17℃;在焦炭率方面,無機材成分越多其焦炭率越高,焦炭率大小順序為Epoxy/APTES (50.7%)、Epoxy/APMDS (42.5%)、Epoxy/APDES (16.5%)和Epoxy/DAP (11.3%);此外,比較以diaminopropane (DAP)為硬化劑之純環氧樹脂 (Epoxy/DAP),其Td5為353.6℃。
熱機械分析的部分,分子運動性越好其熱膨脹係數 (CTE)值越高,由13C Solid state NMR證明分子運動性Epoxy/APTES<Epoxy/APMDS<Epoxy/APDES系統,溫度高於Tg或是低於Tg的CTE值以及ΔCTE值為Epoxy/APTES (28, 176 and 148 μm/m℃)<Epoxy/APMDS (118, 312 and 194 μm/m℃)<Epoxy/APDES (183, 1981 and 1798 μm/m℃)系統;因此可說降低熱膨脹係數上,T型 (Si上有三個烷氧基)的鍵結結構優於D型 (Si上有兩個烷氧基)和M型 (Si上有單一烷氧基);純環氧樹脂之CTE1、CTE2和ΔCTE值分別為169, 316和147μm/m℃,因此含有矽成分系統可以有效降低純環氧樹脂系統之熱膨脹係數。
動態機械分析方面,含矽成分系統Storage modulus (E’)皆高於純環氧樹脂系統,表示無機材的添加有助於剛性程度提高,在50℃,未添加催化劑之Epoxy/APTES、Epoxy/APMDS、Epoxy/APDES和Epoxy/DAP的storage modulus分別為 1789、2004、2374和1626 Gpa;在170℃,未添加催化劑之Epoxy/APTES、Epoxy/APMDS、Epoxy/APDES和Epoxy/DAP分別為1175、147、9.9和6.9 GPa。
在玻璃轉移溫度的部分,Epoxy/APTES系統的Tg相當不明顯,因為T型網狀結構分子的運動受到相當大的限制,導致分子運動不明顯造成Tg的不明顯,其他結構方面D型>M型>未含矽之純環氧樹脂;在未加催化劑下,Epoxy/APTES看不出Tg,Epoxy/APMDS為151℃,Epoxy/APDES為90℃,以及純環氧樹脂為80℃,因此無機材的添加對於材料的機械性質以及熱性質的提升有顯著改善。
光學性質方面,本實驗所製備之環氧樹脂橋式聚有機矽氧烷有機/無機混成材料透光率約100%,透明的材質顯示材料本身均勻性相當好,從SEM微觀影像中,發現材料的無機成分Si-O-Si在整個材料中形成均勻分佈且大小約100 nm顆粒,為奈米等級分散。
Epoxy-bridged polyorganosiloxanes have been synthesized by reacting three kinds of aminoalkoxysilanes with di-functional diglycidyl ether of bisphenol-A epoxy resin as precursors, which were thermally cured with or without catalyst to investigate the cured properties of composites.
In this study, three kinds of aminoalkoxysilanes have been used which are 3-aminopropyltriethoxysilane (APTES), 3-aminopropylmethyldiethoxysilane (APMDS), and 3-aminopropyldimethylethoxysilane (APDES). The reaction of amino group with epoxide group is characterized by FTIR. The characteristic peak of epoxide group is 913cm-1, which disappears after 5 hours. Three kinds of precursors used are Reactive Epoxy-APTES precursor, Reactive Epoxy-APMDS precursor and Reactive Epoxy-APDES precursor. The alkoxy groups of precursors were characterized by 1H NMR.
Epoxy-bridged polyorganosiloxanes were cured at 150℃, which was determined by dynamic DSC analysis. Dibutyltindilaurate (DBTDL), tetrabutylamonium hydroxide (NBu4.OH) and boron trifluoride monoethylamine (BF3.MEA) were used; respectively, to study the structures, thermal and mechanical properties of hybrid materials. The bonding structure and degree of condensation of materials were studied by 29Si CP/MAS NMR. The degree of condensation depends on the steric hindrance of reactive functional groups and catalysts. In Epoxy/APTES Bridged Polyorganosiloxane (Epoxy/APTES) system, the degree of condensation is 76.4% without catalyst and 91.4% with BF3.MEA. In Epoxy/APMDS Bridged Polyorganosiloxane (Epoxy/APMDS) system, the degree of condensation is 72.4% without catalyst and 88.0% with BF3.MEA. In Epoxy/APDES Bridged Polyorganosiloxane (Epoxy/APDES) system, the degree of condensation is 77.0% without catalyst and 89.0% with NBu4.OH.
The degradation of composite depends on the degree of condensation. The high bonding energy of Si-O-Si results in the enhancing of the temperature of degradation (Td). Therefore, the higher the degree of condensation it is, the higher the Td it would have. In Epoxy/APTES system, the Td5 is 270.3℃without catalyst and 354.5℃with BF3.MEA (increased 84.2℃). In Epoxy/APMDS system, the Td5 is 347.9℃without catalyst and is 350.8℃with BF3.MEA (increased 3℃). In Epoxy/APDES system, the Td5 is 326.5℃without catalyst and is 343.2℃with NBu4.OH (increased 17℃). The char yeild depends on the content of inorganic component. The hybrid material which contains more inorganic component causes higher char yeild. The char yields of Epoxy/APTES (50.7%), Epoxy/APMDS (42.5%), Epoxy/APDES (16.5%) and Epoxy/DAP (11.3%) are decreasing in order. Furthermore, The Td5 of Epoxy, cured by Diaminopropane (Epoxy/DAP) is 353.6℃.
From TMA studies, it is found that the CTE1 (the coefficient of thermal expansion at the temperature lower than Tg), CTE2 (the coefficient of thermal expansion at the temperature higher than Tg) and the difference ΔCTE (=CTE1-CTE2) of Epoxy/APTES (28, 176 and 148 μm/m℃), Epoxy/APMDS (118, 312 and 194 μm/m℃) and Epoxy/APDES (183, 1981 and 1798 μm/m℃) are increasing in order. Those properties depend on the mobility of the polymer chain which can be obtained by the 13C Solid state NMR. The mobility of Epoxy/APTES is lower than Epoxy/APMDS. The lower molecular mobility causes the lower coefficient of thermal expansion. Hence, in order to reduce the CTE, the T structure is better than D and M structures. The CTE1, CTE2 andΔCTE of Epoxy/DAP are 169, 316 and 147μm/m℃, respectively. Furthermore, the systems which contain inorganic component can reduce the CTE effectively.
The storage modulus (E’) of the systems which contain inorganic component are higher than that of pure epoxy in DMA analysis. At 50℃, the storage modulus of Epoxy/APTES, Epoxy/APMDS, Epoxy/APDES without catalyst and Epoxy/DAP are 1789, 2004, 2374 and 1626 GPa. At 170℃, the storage modulus of Epoxy/APTES, Epoxy/APMDS, Epoxy/APDES without catalyst and Epoxy/DAP are 1175, 147, 9.9 and 6.9 GPa.
The Epoxy/APTES system has unobvious Tg beacuase of the restriction in molecular motion of the T structure. The Tg of D structure, M structure and pure epoxy resin are decreasing in order. Without catalyst, the Tg of Epoxy/APMDS is 151℃, Epoxy/APDES is 90℃ and Epoxy/DAP is 80℃. Hence, the containment of inorganic component of materials would improve the mechanical and thermal properties.
The optical property has been studied by UV/VIS spectra. The transmittances of Epoxy-bridged polyorganosiloxanes in this research are about 100%. From the SEM microphotographs, it was found that the domains of Si-O-Si are smaller than 100 nm and well-dispersed in composite materials.
1. G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers-Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 1985, 190, 109
2. 垣內弘,新環氧樹脂 (日文),昭晃堂,1985
3. K.C.SheI1, et. al.,“Sol-Gel Processing of Silica", Journal of Non-Crystalline Solids, 1986, 81, 227-237
4. R.C.Mehrotra,“Synthesis and Reaction of Metal Alkoxides”, Journal of Non-Crystalline Solids, 1988, l00, 1-15,.
5. 桓內弘 著, 賴耿陽 譯, “環氧樹脂應用實務”, 復漢出版本土,台北,1993
6. Dow A. Rogers, “ Epoxy-substituted organo Silicon Compounds and Method for Preparing the Same ”, U. S. Patent 2, 883, 395, 1959
7. E. M. Yorkgitis, N. S. Eiss, G. L. Wilkes and J. E. McGrath, “ Siloxane Modified Epoxy Resins ”, Advances in Polymer Science, Epoxy Resins and Composites I, 1985, No. 72, 80
8. J. L. Hedrick, B. Haidar, T. P. Russell and D. C. Hafer, “ Synthesis and Properties of Segmented and Block Poly (Hydroxy - Ether - Siloxane) Copolymers ”, Macromolecules, 1988, 21, 1967
9. J. V. Crivello, and J. L. Lee, “The Synthesis Characterization and Photoinitiated Cationic Polymerization of Silicone – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1990, 28, 479
10. Ochi Mitsukazu, Kawabata Tatsuya, Yamashita Kiichi, Shimbo Masaki, Kobunshi Ronbunshu (日本高分子論文集), 1990, 47, 185
11. Kimihiro Matsukawa, Kiichi Hasegawa, Hiroshi Inoue, Akinori Fukuda and Yasushi Arita, “ Preparation and Curing Behavior of Siloxane – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1992, 30, 2045
12. Ochi Mitsukazu, Katayama Toshio, Mimura Kenji, Yamana Hidekazu, Kobunshi Ronbunshu (日本高分子論文集), 1993, 50, 621
13. Philip A. Fonkalsrud, “ Polyamide – Epoxy – silicone Modified Coating Compositions ”, U. S. Patent 5, 317, 046 , 1994
14. Tzong – Hann Ho and Chun – Shan Wang, “Modification of Epoxy Resins by Hydrosilation for Electronic Encapsulation Application”, J. Appl. Polym. Sci., 1994, 54, 13
15. Tzong – Hann Ho and Chun – Shan Wang, “Low – Stress Encapsulants by Vinylsiloxane Modification”, J. Appl. Polym. Sci., 1994, 51, 2047
16. Jiangdong Tong, Ruke Bai, Yingfang Zou, Caiyuan Pan, and Shigeki Ichimura, Flexibility Improvement of Epoxy Resins by Using Polysiloxanes and Their Derivatives ”, J. Appl. Polym. Sci., 1994, 52, 1373
17. Jeng – Yueh Shieh, Tzong – Hann Ho and Chun – Shan Wang, “ Aminosiloxane – Modified Epoxy Resins as Microelectronic Encapsulants ”, Die Angewandte Makromolekulare Chemie., 1995, 224, 21
18. Shyue – Tzoo Lin and Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, J. Appl. Polym. Sci., 1996, 62, 1641
19. Tsung – Han Ho and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I. ”, Polymer, 1996, 37, 2733
20. Tsung – Han Ho, Jenn – Hwa Wang and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation II. ”, J. Appl. Polym. Sci., 1996, 60, 1097
21. Ming – Chun Lee, Tsung – Han Ho and Chun – Shan Wang, “Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application”, J. Appl. Polym. Sci., 62, 217 (1996).
22. Jeng – Yueh Shieh, Tsung – Han Ho and Chun – Shan Wang, “Synthesis and Modification of Trifunctional Epoxy Resin with Amine Terminated Polydimethylsiloxanes for Semiconductor Encapsulation Application”, Journal of Polymer Research, 1996, 3, 125
23. Po-Hou Sung, Chien-Yang Lin, “Polysiloxane modified Epoxy Polymer Network – II. Dynamic Mechanical Behavior of Multicomponent Graft-IPNs (Epoxy / Polysiloxane / Poly propylene Glycol)”, Eur. Polym. J., 1997, 33, 231
24. Shyue-Tzoo Lin, Steve K. Huang, “Thermal Degradation Study of Siloxane – DGEBA Epoxy copolymers”, Eur. Polym. J., 1997, 33, 365
25. S. S. Lee, S. C. Kim, “Morphology and Properties of Polydimethyl siloxane – Modified Epoxy Resin”, J. Appl. Polym. Sci., 1997, 64, 941
26. Emel Yilgor and Iskender Yilgor, “1, 3-bis (aminopropyl)tetra methyldisiloxane Modified Epoxy Resins : Curing and Characterization ”, Polym., 1998, 39, 1691
27. W.C. Shih and C.C.M. MA, “Tetrafunctional Aliphatic Epoxy. (I) Synthesis and Characterization”, J.of Appl. Poly. Sci., 1998, 69, 51-58
28. “改質環氧樹脂之合成方法及韌性、熱穩定性的特性研究”, 施文昌, 國立清華大學博士論文, 1998
29. W.C. Shih and C.C.M. MA, “Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties”, J. Appl. Polym. Sci., 73, 2739-2747 (1999)
30. “聚矽氧烷改質環氧樹脂之硬化與增韌研究”, 陳宏德, 國立清華大學碩士論文, 1997
31. M. Ochi, R. Takahashi, A. Terauchi, “Phase structure and mechanical and adhesion properties of epoxy/silica hybrids”, Polymer, 2001, 42, 5151-5158
32. “聚矽氧烷樹脂之合成與其聚摻合物之特性研究”, 王豐益, 國立清華大學博士論文, 2001
33. Gui Zhi Li, Lichang Wang, H. Toghiani, Tyrone L. Daulton, Kiyohito Koyama, and Charles U. Pittman, Jr. “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/ Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules 2001, 34, 8686-8693
34. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, J. Am. Chem. Soc., 2001, 123, 11422
35. J. C. Cabanelas, B. Serrano, J. Gonzalez-Benito, J. Bravo, J.Baselag, ”Morphology of Epoxy/Polyorganosiloxane Reactive Blends”, Macromolecular Rapid Communication, 2001, 22, 694-699.
36. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, 2002, 38, 2219–2224
37. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, 2002, 77, 273–278
38. S. Ananda Kumar, T. S. N. Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, 2002, 45, 323–330
39. G.-M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, ” Hybrid Epoxy-Based Thermosets Based on Polyhedral Oligosilsesquioxane: Cure Behavior and Toughening Mechanisms”, Journal of Polymer Science Part B-Polymer Physics, 2003, 41 (24), 3299-3313
40. Chin-Lung Chian, Chen-Chi M. Ma, Feng-Yih Wang, Hsu-Chiang Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, European Polymer Journal, 2003, 39, 825–830
41. Jiwon Choi, Seung Gyoo Kim, and Richard M. Laine, ”Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes”, Macromolecules, 2004, 37, 99-109
42. 黃榮茂, 王禹文, 林聖富和楊得仁, “化學化工百科辭典”, 曉園, 1992
43. J. A. Meads, and F. S. Kipping, “Porosity in polysilsesquioxane xerogels”, J. Chem. Soc., 1915, 107, 459
44. J. F. Brown, and L. H. Vogt, “Phase separation in alkylene-bridged polysilsesquioxane sol-gel systems”, J. Am. Chem. Soc., 1965, 87, 4313
45. K. J. Shea, and D. A. Loy, “Bridged Polysilsesquioxanes. Molecular - Engineered Hybrid Organic – Inorganic Materials”, Chem. Mater, 2001, 13, 3306
46. R. H. Baney, M. Itoh, A.Sakakibara, T. Suzuki, “Silsesquioxanes ”, Chem. Rev 1995; 95, 1409
47. A. Provatas and J. G. Matisons, “Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration”, TRIP 1997; 5, 10
48. M. Tanimura, Handbook of silicon materials. Tokyo: Dow Corning Toray Silicon; 1993, 299
49. L. H. Brown, Treatise: Silicones in protective coatings, vol. 1, Part 3. New York: Marcel Dekker; 1972, 539
50. J. D. Lichtenhan, “Aryl-bridged polysilsesquioxanes. A new class of microporous materials”, Comments Inorg Chem 1995; 17, 115
51. F. K. Chi “Carbon Containing Monolithic Glasses via the Sol-Gel Process”, Ceram. Engng. Sci Proc 1983; 4, 704
52. A. S. Gozdz, “Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group”, Polym. Adv. Technol., 1994; 5, 70
53. Douglas A. Loy, Gergory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar, and Kenneth J. Shea, “Alkylene-Bridged Polysilsesquioxane Aerogels: Highly Porous Hybrid Organic-Inorganic Materials”, Journal of Non-Crystalline Solid”, 1995, 186, 44-53
54. Douglas A. Loy and Kenneth J. Shea, “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials”, Chem. Rev., 1995, 95, 1431-1442
55. K. J. Shea, D. A. Loy and O. Webster, “Arylsilsesquioxane Gels and Related Materials. New Hybrids of Organic and Inorganic Networks”, J. Am. Chem. SOC. 1992, 114, 6700-6710
56. Kyung Moon Choi and Kenneth J. Shea, “Preparation of Nano-Sized Chromium Clusters and Intimate Mixtures of Chromium/CdS Phases in a Porous Hybrid Xerogel by an Internal Doping Method, J. Am. Chem. SOC. 1994,116, 9052-9060
57. Dale W. Schaefer, Greg Beaucage, Douglas A. Loy, Kenneth J. Shea, and J. S. Lin, “Structure of Arylene-Bridged Polysilsesquioxane Xerogels and Aerogels”, Chem. Mate., 16, 2004, 1402-1410
58. Fengyi Liu, Lianshe Fu, Jun Wang, Qingguo Meng, Huanrong Li, Junfang Guo and Hongjie Zhang, “Luminescent lm with terbium-complex-bridged polysilsesquioxanesy”, New J. Chem., 2003, 27, 233–235
59. Douglas A. Loy, Gregory M. Jamison, Brigitta M. Baugher, Sharon A. Myers, Roger A. Assink, and Kenneth J. Shea, “Sol-Gel Synthesis of Hybrid Organic-Inorganic Materials. Hexylene- and Phenylene-Bridged Polysiloxanes”, Chem. Mater. 1996, 8, 656-663
60. Yunfeng Lu, Hongyou Fan, Nilesh Doke, Douglas A. Loy, Roger A. Assink, David A. LaVan, and C. Jeffrey Brinker, “Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality”, J. Am. Chem. Soc. 2000, 122, 5258-5261
61. G. Cerveau, R. J. P. Corriu, and E. Framery, “Nanostructured Organic-Inorganic Hybrid Materials: Kinetic Control of the Texture”, Chem. Mater. 2001, 13, 3373-3388
62. Joe¨l J. E. Moreau, Luc Vellutini, Michel Wong Chi Man, Catherine Bied, Jean-Louis Bantignies, “Self-Organized Hybrid Silica with Long-Range Ordered Lamellar Structure”, J. Am. Chem. Soc. 2001, 123, 7957-7958
63. Genevie`ve Cerveau, Sabrina Chappellet, Robert J. P. Corriu, Bertrand Dabiens, and Jean Le Bideau, “Synthesis and Characterization of New Stable α,ω-Organo(bis-silanetriols)”, Organometallics 2002, 21, 1560-1564
64. Mark C. Burleigh, Michael A. Markowitz, Mark S. Spector, and Bruce P. Gaber, “Porous Organosilicas: An Acid-Catalyzed Approach”, Langmuir 2001, 17, 7923-7928
65. Nanguo Liu, Kui Yu, Bernd Smarsly, Darren R. Dunphy, Ying-Bing Jiang, andC. Jeffrey Brinker, “Self-Directed Assembly of Photoactive Hybrid Silicates Derived from an Azobenzene-Bridged Silsesquioxane”, J. AM. CHEM. SOC. 2002, 124, 14540-14541
66. “以溶膠凝膠法製備磷/矽之有機-無機奈米複合材料及其難燃性與熱性質之研究”, 江金龍, 國立清華大學博士論文, 2003
67. Mahendra P., Kapoor, Qihua Yang, and Shinji Inagaki, “Organization of Phenylene-Bridged Hybrid Mesoporous Silisesquioxane with a Crystal-like Pore Wall from a Precursor with Nonlinear Symmetry”, Chem. Mater., 16, 2004, 1209-1213
68. Ze Li, Xinyu Cao, Hui Xu, Ping Xie, Ming Cao, and Rongben Zhang, “Synthesis and characterization of reactive ladderlike polyallylsilsesqioxane and polyvinylsilsesquioxane”, Reactive & Functional Polymers, 39, 1-7, 1999.
69. Chunqing Liu, Yang Liu, Ping Xie, Rongben Zhang, Chaobin He, and Neal Taishung Chung, “Synthesis and characterization of a novel alcohol-soluble ladderlike polysilsesqioxane containing side-chain with amino terminal groups”, Reactive & Functional Polymers, 46, 175-184, 2000
70. Chunqing Liu, Yang Liu, Juan Feng, Quan Yuan, Ping Xie, Daorong Dai, and Rongben Zhang, “Synthesis and characterization of two novel functional ladderlike polysilsesquioxanes for nonlinear optical response”, Reactive & Functional Polymers, 46, 213-223, 2001
71. Shengxiang Ji, Hui Xu, Xiaoshu Zhou, Daorong Dai, and Rongben Zhang, “Perparation of a new ladderlike oligosilsesquioxane with lateral aryl ester group”, Reactive & Functional Polymers, 50, 23-31, 2001
72. Hui Zu, Ping Xie, and Rongben Zhang, “Synthesis and characterization of oligomeric silsesquioxane with pendent carboxylic acid groups”, European Polymer Journal, 37, 2397-2405, 2001
73. Huadong Tang, Jin Sun, Jinqiang Jiang, Xiaoshu Zhou, Tengjiao Hu, Ping Xie, and Rongben Zhang, “A Novel Aryl Amide-Bridged Ladderlike Polymethylsiloxane Synthesized by an Amino H-Bonding Self-Assembled Template”, J. Am. Chem. Soc., 124, 1482-10488, 2002
74. Gu HW, Xie P, Shen DY, Fu PF, Zhang JM, Shen ZR, Tang YX, Cui L, Kong B, Wei XF, Wu Q, Bai FL, and Zhang RB, “Photo-induced orientation of a film of ladderlike polysiloxane bearing dual photoreactive side groups”, Advanced Materials, 15, 16, 1355, 2003
75. C. F. Zhu, G. Y. Shang, B. S. Li, C. Wang, L. Cui, P. Xie and R. B. Zhang, “Studies of photosensitive alignmeng layer based on ladderlike polysilsesquioxane liguid-crystal devices using atomic force microscopy/force curve”, 35, 459-462, 2003
76. Jin Sun, Huadong Tang, Jinqiang Jiang, Ping Xie, Rongben Zhang, peng-Fei Fu, Qiang Wu, “H-bonding assisted template synthesis of a novel ladderlike organo-bridged polymethylsiloxane”, 44, 2876-2874, 2003
77. Huadong Tang, Jin Sun, Xiaoshu Zhou, Pengfei Fu, Ping Xie, Rongben Zhang, “Hydrogen-bonding-directed template synthesis of novel stereo-regular organo-bridged ladder-like polymethylsiloxane”, 204, 155-163, 2003
78. “納米複合材料”, 徐國財, 張立德, 化學工業出版社, 2001
79. G. L. Wilkes, B. Orler and H. Huang, “Ceramers:Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol-Gel Process.”, Polym. Bull., 1985, 14, 557
80. Connor, T. M., “NMR Basic Principles and Progress”, 1971, 4, 247-270
81. Takayuki Murayama, “Dynamic Mechanical Analysis of Polymeric Material”, Elsevier Scientific Publishing Company, 1978
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top