跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳麗蓉
研究生(外文):Li Jung Chen
論文名稱:製備鈀金屬奈米粒子與應用於化學鍍銅製程之研究
論文名稱(外文):Preparation of Pd Nanoparticles and its Application to Electroless Copper Deposition
指導教授:萬其超萬其超引用關係王詠雲
指導教授(外文):Chi Chao WanYung Yun Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:89
中文關鍵詞:奈米鈀粒子無電鍍銅活化液印刷電路板化學銅沉積
外文關鍵詞:palladium nanoparticleselectroless depositionactivatorPCBPdCu
相關次數:
  • 被引用被引用:2
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來, 人們採用高科技的方法致力於製備均勻、高純度、顆粒小、球狀、分散性好、粒徑分布窄和比表面積大的貴重金屬粒子。由於奈米級貴重金屬具有較高的表面積比及催化活性,因此有極高的潛力應用化學鍍銅活化液。
本實驗利用化學還原法,以高分子為保護劑在室溫下的純乙二醇(EG)系統中加入氫氧化鈉促進乙二醇還原鈀的速率,此方法成功的改進了過去乙二醇下合成鈀奈米粒子需要外加還原劑或升溫的方法。利用TEM與XRD鑑定鈀奈米粒子,得知隨著氫氧化鈉濃度的增加得到顆粒小均勻、分散性好且粒徑分布窄的鈀奈米粒子。當氫氧化鈉從0增加到3.2 X 10-1M,粒徑則由8.6降低到2.4 nm。吾人進一步利用FT-IR鑑定氫氧化鈉加入乙二醇的產物,發現隨著時間的增加,具有還原力的醛化合物亦增加,證明在乙二醇中加入氫氧化鈉可加速乙二醇的還原力。
將新開發的Pd/PVP/EG用水析釋配活化液,應用於印刷電路板無電鍍銅製程,由鍍通孔或無電鍍銅的研究發現,此鈀奈米粒子在低濃度(10ppm)操作亦具有很好的穩定性,且不若市售鈀離子系統活化液,它需要外加還原劑的程序,此高經濟價值具有與目前商業活化液- 錫鈀、離子鈀相批敵的潛力。本實驗中,也開發出一適合Pd/PVP/EG的整孔劑與無電鍍銅製程,解決鈀金屬在非導電板材吸附力的問題。本實驗也發現在實際應用於鍍通孔(PTH)時,Pd/PVP/EG的吸附將受到蝕刻酸洗的影響,使得鍍通孔製程不佳,此問題有待未來進一步的研究。

近年來, 人們採用高科技的方法致力於製備均勻、高純度、顆粒小、球狀、分散性好、粒徑分布窄和比表面積大的貴重金屬粒子。由於奈米級貴重金屬具有較高的表面積比及催化活性,因此有極高的潛力應用化學鍍銅活化液。
本實驗利用化學還原法,以高分子為保護劑在室溫下的純乙二醇(EG)系統中加入氫氧化鈉促進乙二醇還原鈀的速率,此方法成功的改進了過去乙二醇下合成鈀奈米粒子需要外加還原劑或升溫的方法。利用TEM與XRD鑑定鈀奈米粒子,得知隨著氫氧化鈉濃度的增加得到顆粒小均勻、分散性好且粒徑分布窄的鈀奈米粒子。當氫氧化鈉從0增加到3.2 X 10-1M,粒徑則由8.6降低到2.4 nm。吾人進一步利用FT-IR鑑定氫氧化鈉加入乙二醇的產物,發現隨著時間的增加,具有還原力的醛化合物亦增加,證明在乙二醇中加入氫氧化鈉可加速乙二醇的還原力。
將新開發的Pd/PVP/EG用水析釋配活化液,應用於印刷電路板無電鍍銅製程,由鍍通孔或無電鍍銅的研究發現,此鈀奈米粒子在低濃度(10ppm)操作亦具有很好的穩定性,且不若市售鈀離子系統活化液,它需要外加還原劑的程序,此高經濟價值具有與目前商業活化液- 錫鈀、離子鈀相批敵的潛力。本實驗中,也開發出一適合Pd/PVP/EG的整孔劑與無電鍍銅製程,解決鈀金屬在非導電板材吸附力的問題。本實驗也發現在實際應用於鍍通孔(PTH)時,Pd/PVP/EG的吸附將受到蝕刻酸洗的影響,使得鍍通孔製程不佳,此問題有待未來進一步的研究。
Abstract
In the conventional polyol method, addition of extra reducing agent or reacting at high temperature is needed to accelerate the reduction rate. However, our investigation shows stable and uniform Pd nanoparticles protected by polyvinyl pyrrolidone (PVP) can be successfully synthesized in pure ethylene glycol (EG) under room temperature by adding of NaOH to speed up the reduction.
The average particle size of the so-obtain Pd nanoparticles ranges from 8.6 to 2.4 nm when the NaOH changes from 0 to 3.2×10-1 M. The particle formation was monitored by UV-Vis. And the microstructure of Pd nanopartilces was analyzed by TEM and XRD. The product of adding NaOH in EG was characterized by FT-IR and compound having –CHO group was identified, which possesses reductive ability and proves that adding NaOH in EG can indeed accelerate the reduction of Pd.
The newly developed Pd nanoparticle was tested to be an effective activator for electroless cooper deposit and especially for PTH processing in the PCB industry. The Pd/PVP/EG based activator shows not only superior stability but also improved performance compared with existing commercial activators. Suitable conditioning procedures for the newly synthesized activator were also developed.
Contents
Abstract I
摘 要 II
謝 誌 III
Contents IV
Figure of contents VI
Table of contents IX
C h a p t e r 1 Introduction and Literature review 1
1.1 Introduction 1
1.2 Literature reviews 1
1.2.1 Fundamental theories of electroless metal deposition 1
1.2.2 The improvement of ECD in the PCB industry 2
1.2.3 Typical procedures for PCB using Tin-Palladium as activator 3
1.3 Activators used in PCB processing 3
1.3.1 The function of each process of PCB for Sn/Pd colloid 3
1.3.2 Neopact process (Atotect) 6
1.3.3 Commercial Pdion used as activator for electroless copper deposition in PCB 8
1.3.4 Pd nanoparticles as activator 9
1.4 Synthesizing palladium particles in ethylene glycol 13
1.4.1 In ethylene glycol system 13
1.4.2 Synthesis of alloy nanoparticles in EG system 16
1.5 Factors affecting the particles sizes 18
1.5.1 Influence of alkali on the mean particle size in EG 18
1.5.2 Other methods to control particle size in EG system 21
1.5.3 Control particle size in general aqueous system 22
1.6 Research purpose 26
C h a p t e r 2 Research method 27
2.1 Materials 27
2.2 Experimental instrument 28
2.3 Principle of analytical instruments 29
2.3.1 Ultraviolet-Visible Absorption Spectrometry (UV-vis) 29
2.3.2 Fourier Transform Infrared Spectrometry (FT-IR) 33
2.3.3 Scanning Electron Microscope (SEM) 35
2.3.4 Transmission Electron Microscope (TEM) 36
2.3.5 X-Ray Diffraction (XRD) 37
C h p a t e r 3 Experimental sections 38
3.1 Preparation of Pd/PVP/EG nanoparticles 38
3.1.1 Synthesis of Pd/PVP nanoparticles in EG system 38
3.1.2 Temperature effect 39
3.1.3 Effect of extra reducer (HCHO) and alkali added (NaOH) 40
3.1.4 With alkali added (NaOH) 42
3.1.5 Characterization of Pd/PVP/EG nanoparticles 43
3.2 Pd/PVP/EG as activator for electroless 44
3.2.1 Choose a suitable conditioner for Pd/PVP/EG 44
3.2.2 Pd/PVP/EG as activator for through holes plating (PTH) 50
C h a p t e r 4 Result and Discussion 54
4.1 Synthesis of Pd nanopartilces 54
4.1.1 The synthesis of Pd nanoparticles in ethylene glycol (EG) 54
4.1.2 With respect to temperature 54
4.1.3 Influence of both formaldehyde and sodium hydroxide added 55
4.1.4 Influence of sodium hydroxide added 59
4.2 Pd/PVP/EG as activator in electroless copper deposition 73
4.2.1 Pd/PVP/EG for electroless copper deposition 73
4.2.2 Pd/PVP/EG as activator for through holes plating of PCB 82
C h a p t e r 5 Conclusion 86
C h a p t e r 6 Reference 87
[1] D. A. Luke Lea Ronal, Buxtion, England Electroless Plating chp. 12
[2] Butterworth and Luke, British Patent 1, 175, 282, 23rd December (1969)
[3] Lukes, R. M. Plating, 51, 1066 (1964)
[4] C.R Shipley, U. S. Patent 3001, 920 (1961)
[5] C.L.Lee, C-C Wan and Y-Y Wang, Adv. Funct. Mater. 11,344 (2001).
[6] A. J. Bard and L. R. Faulknerm, Electrochemical Methods, P. 725, John Wiley & Sons, New York (2001).
[7] J. Wang, Analytical Electrochemistry, P. 52, John Wiley & Sons, New York (2000).
[8] D. A. Buttry and M. D. Ward, Chem. Rev., 92, 1355 (1992).
[9] F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina*, P-Y. Silvert and K.Tekaia-Elhsissen , NanoStructured Materials, 11, 8, 1277 (1999).
[10] K. Tekaia-Elhsissen, F.Bonet, S. Grugeon, S. Lambert, and R. Herrera-Urbina, J. Mate. Res., 14, 9, 3707 (1999)
[11] F. Fievet, J.P. Lagier, B. Blin, Solid state Ionics, 32/33 , 198-205 (1989)
[12] L.K. Kurihara, NanoStructured Materials, 5, 607 (1995).
[13] W. L. Wang, Preparation of palladium nanoparticles by reactive micelles as templates and its application, Thesis of Chemical Engineering Department of National Tsing Hua University.
[14] P. R. Van Rheenen, M. J. McKelvy, and W. S. Glaunsinger, J. Solid State Chem. , 67, 151 (1987).
[15] K. Esumi, O. Sadakane, K. Torigoe, and K. Meguro, Colloids Surf. 62, 255 (1992).
[16] J. H. Clint, I. R. Collins, J. A. Williams, B. H. Robinson, Th. F. Towey, Ph.Cajean, and A. Khan-Lodhi, Faraday Discuss. 95, 219 (1993).
[17] S. Ayyappan, R. S. Gopalan, G. N. Subbanna, and C. N. R. Rao, J. Mater. Res., 12, 398 (1997).
[18] M. T. Reetz and W. Helbig, J. Am. Chem. Soc. 116, 7401 (1994).
[19] P.Y.Silvert, V.Vijayakrishnan, P.Vibert, R.Herera-Urbina, and T.Elhsissen, NanoStructured Materials, 6, 611 (1996).
[20] N.Toshima and Y. Wangl, Langmuir,10, 4574 (1994).
[21] V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc. ,72 (1950)
[22] V. K. LaMer, Ind. Eng. Chem., 44, 1270 (1952)
[23] F. Fievet, F. Fievet-Vincent, J.P. Lagier, B. Dumont and M. Figlarz; J. Mater. Chem., 3(6), 627-632 (1993)
[24] G. Viau, F. Fievet-Vincent, F. Fievet.; Solid State Ionics,84, 259-270 (1996)
[25] F. Fivet, J.P. Lagier and M. Figlarz, M.R.S. Bull. 14 (1989)
[26] C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, Solid State Chem., 100 , 272 (1992)
[27] C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, Solid states Ionics, 63-65, 25-30 (1993)
[28] J. S. Bradley, Clusters and Colloids, ed. G. Schmid, Chap. 6, VCH, Weinheim (1994).
[29] T. Yonezawa, N. Toshima, J. Chem. Soc. Faraday Trans., 91(22), 4111-4119 (1995)
[30] H. P. Choo, K. Y. Liew and H. F. Liu, J. Mater. Chem., 12, 934 (2002).
[31] G. Mie, Ann. Physik. , 25, 377 (1908)
[32] J. A. Creighton and D. G. Eadon, “ Ultraviolet-visible Absorption Spectra of the Colloidal Metallic Elements”, J. Chem. Soc. Faraday Trans., 87,3881 (1991)
[33] P. Mulvaney, “ Spectroscopy of Metal colloids-some comparison with Semiconductor colloids”, in Semiconductor Nanoclusters-Physical, Chemical, and Catalytic Aspects edited by P. C. Kamat and D. Meisel, Elsevier, Amsterdam 99, (1997).
[34] P. Mulvaney, “ Surface Plasmon Spectroscopy of Nanosized Metal Particles”, Langmuir, 12, 788 (1996)
[35] Veisz, B.; Kiraly, Z.; Langmuir; 19(11); 4817-4824 (2003).
[36] Srivastava, S. C. ; Newman, L. Inorg. Chem., 5, 1506 (1966)
[37] Feldberg, S.; Klotz, P. ; Newman, L. Inorg. Chem., 11, 2860 (1972)
[38] Robert M. Silverstein and Francis X. Webster, Spectrometric identification of organic compounds, Sixth Edition, Wiley.
[39] D. Brune, R. Hellborg, H. J. Whitlow and O. Hunderi, Surface characterization, Wiley-Vch.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊