跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊賢
研究生(外文):Chun-Hsien Li
論文名稱:負載銀二氧化鈦光觸媒分散及其光催化反應之研究
論文名稱(外文):Dispersion and Impreganating Titania with Nanosized Silver and Its Photocatalytic Property
指導教授:周更生周更生引用關係
指導教授(外文):Kan-Sen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:77
中文關鍵詞:奈米銀二氧化鈦光催化反應
相關次數:
  • 被引用被引用:18
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:3
在本論文研究中,首先是將市售之二氧化鈦粉末分散,使其粒子表面積能夠充分展現以提高光催化活性,而經比較後加入界面活性劑Triton X-100比純以超音波震盪的分散效果好,且穩定性也較佳,其中若調整加入界面活性劑後之懸浮液pH值以增強二氧化鈦粒子表面之帶電量,由粒徑儀結果顯示可將原先聚集成3 μm大小之粒子分散至20 nm大小左右,而由對亞甲基藍之光催化測試結果亦証實了經分散過之二氧化鈦粒子有較佳之光催化活性。
接著嘗試著將二氧化鈦粉末沉浸在本實驗室配製之奈米銀溶液中,以化學吸附的方式讓奈米銀自然吸附在二氧化鈦粒子之表面,再試著比較以化學還原奈米銀至二氧化鈦粒子表面之方式,藉著奈米銀可降低電子與電洞對再結合之能力而使二氧化鈦粒子光催化活性提高,而由對亞甲基藍光催化測試結果證實其真實性。然後以高溫氫氣對二氧化鈦粉末做還原的動作,二氧化鈦被還原後會形成部分的Ti3+,藉著Ti3+易抓住電洞的特性延遲電子與電洞對再結合以提升光催化之效果。最後將奈米銀負載於經還原過後之二氧化鈦粒子於紫外光與可見光下對酚作光催化分解,發現其亦得到一定程度的分解效果。
最後將光催化活性得到提升的二氧化鈦粒子以三種不同之覆膜液鍍膜於玻璃基板上,發現以Silicone Rubber作為高分子黏著劑除了可將二氧化鈦粒子緊密地固定於基板上,對亞甲基藍做光催化測試也可得到不錯之分解效果。
In this study, the experiment was divided into three parts. First, we tried to disperse the titania powders in order to enhance the photocatalytic activities via increasing the surface area. Compared with the dispersed titania powders only by ultrasonic vibration, the one added Triton X-100 performed better dispersing result and stability. Moreover, if we adjusted the pH value of suspension after adding Triton X-100, the surface charge of titania powders were enhanced and performed much better dispersing result.
Then we tried to let the nano-silver particles adsorbed onto the surface of titania through chemical adsorption and chemical reduction two methods, and we found that the two ways did enhance the photocatalytic activity of titania by photocatalytic testing on methylene blue solution. The nano-silver particles could reduce the ability of recombination between electron-hole pairs in order to enhance the photocatalytic activity. We also used high-temperature hydrogen gas to reduce some Ti4+ to Ti3+ in the electronic configuration of titania. The photocatalytic activities of titania also improved due to the ability of capturing holes by Ti3+. Finally, we loaded nano-silver particles on titania which had been reduced by high-temperature hydrogen gas, and used them to proceed photocatalytic decomposition reaction on phenol in order to prove its photocatalytic ability.
At last, we coated the titania powders having better photocatalytic activities on the glass substrate by three different kinds of adhesives. Then we found the silicone rubber could fix the titania powders on the glass substrate tightly and perform acceptable results by photocatalytic testing on methylene blue.
目錄

一、前言 1
二、文獻回顧 2
2.1 二氧化鈦簡介 2
2.2 二氧化鈦的特性 4
2.2.1 抑菌、殺菌能力 4
2.2.2 無毒性 4
2.2.3 脫臭 4
2.2.4 親水性 5
2.2.5 自淨性 5
2.3 光催化反應原理 5
2.4 量子效應 6
2.5 光催化反應器 7
2.5.1 泥漿反應器 7
2.5.2 薄膜反應器 8
2.5.3 填充床反應器 9
2.5.4 流體化床反應器 10
2.6 改質二氧化鈦觸媒 11
2.6.1 Au/TiO2 11
2.6.2 Pt/TiO2 12
2.6.3 Ag/TiO2 12
2.6.4 Mn+/TiO2 13
2.6.5 F-/TiO2 13
2.6.6 MgO/TiO2 14
2.6.7 V2O5/TiO2 14
2.6.8 CdS/TiO2 14
2.7 光催化分解酚 16
三、實驗部分 18
3.1 實驗藥品 18
3.2 實驗儀器 20
3.3 實驗步驟 21
3.3.1 二氧化鈦粒子基本性質之分析 21
3.3.1.1 表面結構分析 21
3.3.1.2 比表面積分析 21
3.3.1.3 晶相分析 22
3.3.1.4 光催化測試 22
3.3.2 二氧化鈦粒子之分散 23
3.3.2.1 超音波震盪分散 23
3.3.2.2 調整懸浮液之pH值觀察二氧化鈦
粒子分散行為 23
3.3.2.3 以Triton X-100分散 24
3.3.2.4 調整Triton X-100之pH值觀察二
氧化鈦粒子分散行為 24
3.3.2.5 光催化測試 24
3.3.3 奈米銀負載二氧化鈦粒子 25
3.3.3.1 沉浸法 25
3.3.3.1.1 製備步驟 25
3.3.3.1.2 光催化測試 26
3.3.3.1.3 不同粒徑之奈米銀負載對二氧
化鈦光活性之影響 26
3.3.3.2 化學還原法 27
3.3.3.2.1 固定銀離子濃度下改變鹼濃度
還原奈米銀於二氧化鈦粒子 27
3.3.3.2.2 固定鹼濃度下改變銀離子濃度
還原奈米銀於二氧化鈦粒子 28
3.3.3.2.3 改變銀離子吸附於二氧化鈦粒
子上之量 28
3.3.4 以高溫氫氣還原二氧化鈦 28
3.3.4.1 製備步驟 28
3.3.4.2 晶相與比表面積分析 29
3.3.4.3 程溫還原分析 29
3.3.4.4 光催化測試 30
3.3.4.5 負載奈米銀於經高溫氫氣還原之
二氧化鈦粒子 30
3.3.4.6 光催化分解酚 30
3.3.5 二氧化鈦薄膜之製備 31
3.3.5.1 以Silicone Rubber溶液與二氧
化鈦粉末混合作為覆膜液 31
3.3.5.2 以幾丁聚醣溶液與二氧化鈦粉末
混合作為覆膜液 32
3.3.5.3 以PU水溶液與二氧化鈦粉末混合
作為覆膜液 33
3.3.5.4 二氧化鈦薄膜的光催化測試 33
四、實驗結果與討論 35
4.1 二氧化鈦粒子基本性質之分析 35
4.1.1 表面結構分析 35
4.1.2 比表面積分析 35
4.1.3 晶相分析 37
4.1.4 光催化測試 39
4.2 二氧化鈦粒子之分散 42
4.2.1 以超音波震盪分散二氧化鈦粒子 42
4.2.2 調整懸浮液之pH值觀察二氧化鈦粒
子分散行為 43
4.2.3 以不同濃度之Triton X-100水溶液
分散二氧化鈦粒子 45
4.2.4 以不同pH值之Triton X-100水溶液
分散二氧化鈦粒子 47
4.2.5 比較分散後二氧化鈦懸浮液之穩定
程度 49
4.2.6 二氧化鈦粒子經分散後之光催化測
試 50
4.3 奈米銀負載二氧化鈦粒子 51
4.3.1 沉浸法 51
4.3.1.1 固態UV-Vis吸收光譜圖 51
4.3.1.2 光催化測試 52
4.3.1.3 不同粒徑之奈米銀負載對二氧化
鈦光活性之影響 55
4.3.2 化學還原法 57
4.3.2.1 固定銀離子濃度下改變鹼濃度還
原奈米銀於二氧化鈦粒子 57
4.3.2.2 固定鹼濃度下改變銀離子濃度還
原奈米銀於二氧化鈦粒子 59
4.3.2.3 改變銀離子吸附於二氧化鈦粒子
上之量 60
4.4 以高溫氫氣還原二氧化鈦 62
4.4.1 晶相與表面積分析 62
4.4.2 程溫還原分析 63
4.4.3 光催化測試 63
4.4.4 負載奈米銀於經高溫氫氣還原之二
氧化鈦粒子 65
4.4.5 光催化分解酚 67
4.5 二氧化鈦薄膜製備 68
4.5.1 薄膜厚度與表面均勻程度 68
4.5.2 光催化測試 70
五、結論 72
六、參考文獻 74
Aguado, M. A., and M. A. Anderson, “Degradation of Formic Acid over Semiconducting Membranes Supported on Glass: Effects of Structure and Electronic Doping”, Solar Energy Mat. Solar Cell, 28, p.345, (1993)

Albert, M., Y-M. Gao, D. Toft, K. Dwight, and A. Wold, “Photoassisted Gold Deposition of Titanium Dioxide”, Mat. Res. Bull., 27, p.961, (1992)

Bamwenda, G. R., S. Tsubuta, T. Nakamura, and M. Haruta, “Photoassisted Hydrogen Production from a Water-Ethanol Solution: a Comparision of Activities of Au- TiO2 and Pt- TiO2”, J. Photochemistry and Photobiology A:Chemistry, 89, p.177, (1995)

Burdett, J. K., Timothy Hughbanks, Gordon J. Miller, James W. Richardson, and Joseph V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295K”, J. Am. Chem. Soc., 109, p.3639, (1987)

Carlson, T., and G.L. Griffin, “Photooxidation od Methanol Using V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, J. Phys. Chem., 90, p.5896, (1986)

Dibble, L. A., and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams”, ES&T, 26, p.492, (1992)

Dobosz, A., and A. Sobczyński, “The Influence of Silver Additivies on Titania Photoactivity in the Photooxidation of Phenol”, Water Research, 37, p.1489, (2003)

Dobosz, A., and A. Sobczyński, “Water Detoxification: Photocatalytic Decomposition of Phenol on Ag/TiO2”, Monatshefte für Chemie, 132, p.1037, (2001)
Driessen, M. D., and V. H. Grassian, “Photooxidation of Trichloroethylene on Pt/ TiO2”, J. Phys. Chem. B, 102, p.1418, (1998)

Gao, Y-M., H-S. Shen, K. Dwight, and A. Wold, “Preparation and Photocatalytic Properties of Titanium (IV) Oxide Films”, Mat. Res. Bull., 27, p.1023, (1992)

Herrmann, J. M., H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Appl. Catal. B: Environ., 13, p.219, (1997)

Hsu, J. P., and Y. T. Chang, “An Experimental Study of the Stability of TiO2 particles in Organic-Water Mixtures’, Colloids and Surfaces, 161, p.423, (2000)

Hung, C. H., and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, ES&T, 31(2), p.562, (1997)

Hyung, M. S-S., R. C. Jae, J. H. Hoe, M. K. Sang, and C. B. Young, “Comparasion of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visable and UV light irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 163, p,37, (2004)

Ilisz, I., Z. László, and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics”, Applied Catalysis A: General, 180, p.25, (1999)

Karakitsou, K. E., and X. E. Verykios, “Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage”, J. Phys. Chem., 97, p.1184, (1993)

Linsebigier, A. L., Lu. G., and J. T. Yates, “Photocatalysis on TiO2 Surface: Principle, Mechanism, and Selected Results”, Chem. Rev., 95, p.735, (1995)

Peral, J., and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, J. Catal., 134, p.554, (1992)

Phase Diagram for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 75, (1975)

Sauer, T., G. Cesconeto Neto, H. J. Jose, and R. F. P. M. Moreira, “Kinetics of Photocalytic Degradation of Reactor”, J. Photochemistry and Photobiology A:Chemistry, 149, p.147, (2002)

Sun, B., A. V. Vorontsov, and P. G. Smirniotis, “Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation”, Langmuir, 19, p.3151, (2003)

Yoneyama, H., Y. Toyoguchi, and H. Tamura, “Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solution”, J. Phys. Chem., 76, p.3460, (1972)

Yu., J. C., Jiagou Yu, Wingkei Ho, Zitao Jiang, and Lizhi Zhang, “Effect of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders”, Chem. Master., 14, p.3808, (2002)

Wang C., H. Shang, Y. Tao, T. Yuan, and G. Zhang, “Properties and Morphology of CdS Compounded TiO2 Visible-light Photocatalytic Nanofilms Coated on Glass Surface”, Separation and Purification Technology, 32, p.357, (2003)

Windholz, M., The Merck Index, 10th ed., Merck & CO., Inc, N. J., p.9301, (1983)

林正豐, “奈米二氧化鈦之製備及活性測定”, 國立台灣大學碩士論文, (2001)

林彥志, “TiO2光觸媒分解亞甲基藍之變因探討及動力學研究”, 國立台灣大學碩士論文, (1999)

徐惠美, “光觸媒材料與應用製品現況”, 化工資訊, 12, p.28, (2000)

台灣日光燈公司網頁網址:http://www.tfc.com.tw/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top