跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳亮羽
研究生(外文):Liang-Yu Chen
論文名稱:藉由模板輔助法生成奈米陣列之研究
論文名稱(外文):Template based foramation of Nanoarrays
指導教授:呂世源
指導教授(外文):Shin-Yuan Lu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:103
中文關鍵詞:模板法奈米陣列陽極氧化鋁二氧化鈦高分子模板
外文關鍵詞:TemplatearrayAAONiTiO2polymer template
相關次數:
  • 被引用被引用:8
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文是以模板法合成奈米陣列為主題,所利用的模板可分成兩種:(一)無機模板–商業用陽極氧化鋁模板(100nm、200nm)及(二)有機模板–高分子模板(以PS為主體,孔徑30nm),我們利用此兩種模板來合成奈米陣列;所合成出的材料有以溶膠凝膠法(sol–gel method)及電化學沉積法(electrodeposition)合成具有優秀光催化性能之二氧化鈦,以及電化學沉積法合成具有磁性的鎳金屬。
無機模板:於二氧化鈦方面,利用傳統製備氧化物之溶膠凝膠法製備二氧化鈦奈米陣列,為了能控制所生長出二氧化鈦之長度,又利用電化學沉積法以補強溶膠凝膠法之不足。於金屬鎳方面,我們利用電化學沉積法來進行奈米陣列之合成,我們藉由控制電化學沉積時間之不同探討其形態之改變對於磁性質所造成之影響。
有機模板:於二氧化鈦方面,我們亦利用溶液溶膠法製備的二氧化鈦溶液進行填充,進而可得到二氧化鈦奈米陣列,除了溶膠凝膠法外,我們亦改善此製程易有連續被覆層之缺點而採取二氧化鈦先驅物溶液之填充,此法可有效改進溶膠凝膠法之缺點;於金屬鎳方面,我們利用電化學沉積法進行奈米陣列之生長,藉由控制一些製程參數,可得鎳奈米陣列。
The topic of the thesis is preparation of inorganic functional nano-array by using template-based method. I used two kinds of templates:the first is inorganic template–commercial anodic aluminum oxide membranes with pore size of 100 and 200nm and the second is organic template–polymer template with PS matrix and 30nm pores. I fabricated nano-arrays by using these two different templates. There are two materials that I wanted to introduce to the pores of the templates. I fabricated nano-arrays of titanium dioxide which has excellent photocatalytic properties, prepared by using sol-gel method and electrodeposition method. The other material is nickel which has ferromagnetic property, prepared by electrodeposition method.
Inorganic template:For the titanium dioxide nano-arrays, I used the sol-gel method which is usually the traditional method for preparing the oxide materials. In order to control the length of titanium dioxide structure, we also used electrodeposition method. For nickel metal, we fabricated the nano-array by electrodeposition. I studied the variation of magnetic properties caused by different Ni nano-array structure by adjusting the electrodeposition time.
Organic template:For the titanium dioxide nano-arrays, I also used the sol-gel method to infill the pores of the template. Besides this method, I also improve the disadvantage of process by the infiltration of titanium precursor solution. This method could improve the drawback of sol-gel method greatly. For nickel metal, I constructed the nano-array by using electrodeposition method. I could get the nickel nano-array by controlling the sutiable parameters of the process.
Akamatsu, K., S. Deki, "Dispersion of gold nanoparticles into a nylon 11 thin film during heat treatment:in situ optical transmission study," J. Mater. Chem., 8, 637–640(1998)

AlMawlawi, D., N. Coombs, M. Moskovits, "Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size," J. Appl. Phys., 70, 4421–4425(1991)

Cheng, J.Y., C.A. Ross, V.Z.H. Chan, E.L. Thomas, R.G.H. Lammertink, G.J.Vancso, "Formation of cobalt magnetic dot array via block copolymer lithography," Adv. Mater., 13, 1174–1178(2001)

Choi, J., S. Guido, K. Nielsch, R.B. Wehrspohn and U. Gosele, "Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio," Chem. Mater., 15, 776-779 (2003)

Chu, S.Z., K. Wada, S. Inoue, S.I. Todoroki, "Synthesis and characterization of titania nanostructures on glass by al anodization and sol-gel process," Chem. Mater., 14, 266–272(2002)

Chung, S.H., Y. Wang, L. Persi, F. Croce, S.G. Greenbaum, B. Scrosati, E. Plichta, "Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides," J. Power Sources, 97–8, 644–648(2001)

Duan, X, J. Wang, C.M. Lieber, "Synthesis and optical properties of gallium arsenide nanowires," Appl. Phys. Lett., 76, 1116–1118(2000)

Fan S., M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, "Self-oriented regular arrays of carbon nanotubes and their field emission properties," Science, 283, 512–514(1999)

Huczko, A., "Template-Based Synthesis of Nanomaterials," Appl. Phys. A, 70, 365–376 (2000)

Iijima, S., "Helical microtubules of graphitic carbon," Nature, 354, 56–58 (1991)

Jiang, K., Y. Wang, J. Dong, L. Gui, Y. Tang, "Electrodeposited metal sulfide semiconductor films with ordered nanohole array structures," Langmuir, 17, 3635–3638(2001)

Kang, H., Y.W. Jun, J.I. Park, K.B. Lee, J. Cheon,"Synthesis of Porous Palladium Superlattice Nanoballs and Nanowires," Chem. Mater.,12, 3530–3532(2000)

Kim, Y.S., K.Y. Suh, H.H. Lee, "Fabrication of three-dimensional microstructures by soft molding," Appl. Phys. Lett., 79, 2285–2287(2001)

Kim, Y.S., K.Y. Suh, H.H. Lee, "Three-dimensional pattern transfer and nanolithography: modified soft molding," Appl. Phys. Lett., 81, 1011–1013(2002)

Kresge, C.T., M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, "Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism," Nature, 359, 710-712(1992)

Lakshmi, B.B., P.K. Dorhout, C.R. Martin,"Sol-Gel Template Synthesis of Semiconductor Nanostructures," Chem. Mater., 9, 857–862(1997)

Lee, J.S., A. Hirao, S. Nakahama, "Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures," Macromolecule, 22, 2602–2606(1989)

Martin, C.R., "Membrane-Based Synthesis of Nanomaterials," Chem. Mater., 8, 1739–1746 (1996)

Masuda, h. and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268, 1466 (1995)

Masuda, H., H. Yamada, M. Satoh, M. Nakao and T. Tamamura, "Highly Ordered Nanochannel-Array Architecture in Anodic Alumina," Appl. Phys. Lett., 71, 2770–2772 (1997)

Memming, R., Semiconductor Electrochemistry, 1st ed., Wiley–Veh, New York,264–274(2001)


Misner, M.J.,H. Skaff, T. Emrick, T.P. Russell, "Directed Deposition of Nanoparticles Using Diblock Copolymer Templates," Adv. Mater., 15, 221–224(2003)

Neamen, D. A., Semiconductor Physics and Devices, 2nd ed., Mc Graw Hill: New York, 1-25 (1999)

Nielsch K.,R.B. Wehrspohn,J. Barthel,J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller, "Hexagonally ordered 100 nm period nickel nanowire arrays," Appl. Phys. Lett., 79, 1360–1362(2001)

Sakurai, Y., S. Okuda, H. Nishiguchi, N. Nagayama, M. Yokoyama, "Microlens array fabrication based on polymer electrodeposition," J. Mater. Chem., 13, 1862–1864(2003)

Sellmyer, D.J., M. Zheng and R. Skomski, "Magnetism of Fe, Co and Ni Nanowires in Self-Assembled Arrays," J. Phys.: Condens. Matter., 13, R433–R460 (2001)

Serpone,N., D. Lawless, R. Khairutdinovt, "Size Effects on the Photophysical Properties of Colloidal Anatase Ti02 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor," J. Phys. Chem., 99, 16646–16654(1995)

Skoog, D.A., J.J. Leary, Principles of instrumental analysis, 5th ed., Saunders college:New York(1992)

Sleytr, U.B., P. Messner, D. Pum, M. Sára, "Crystalline Bacterial Cell Surface Layers (S Layers):From Supramolecular Cell Structure to Biomimetics and Nanotechnology," Angew. Chem. Int. Ed., 38, 1034–1054(1999)

Thompson, G.E., "Porous Anodic Alumina: Fabrication, Characterization and Applications," Thin Solid Films, 297,192–201(1997)

Thurn-Albrecht, T., J. Schotter, G.A.Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, "Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates," Science, 290, 2126–2129(2000)

Wang, Z., Y.K. Su and H.L. Li, "Study of Gold Nanowire Array Electrodeposited within Anodic Aluminum Oxide Template," Appl. Phys. A, 74, 563~565 (2002)
Wu J.J., S.C. Liu, “Catalyst-free growth and characterization of ZnO nanorods,” J. Phys. Chem. B, 106, 9546–9551(2002)

Wu, C.G., T. Bein, "Conducting polyaniline filaments in a mesoporous channel host," Science, 266, 1757–1759(1994)

Xia, Y., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater., 15, 353–389(2003)

Yamashita I., Thin Solid Films, 393, 12(2001)

Zhang, X.Y., L.D. Zhang, W. Chen, G.W. Meng, M.J. Zheng, L.X. Zhao, "Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays," Chem. Mater., 13, 2511–2515(2001)

Zhang, Y., N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, "A Simple Method To Synthesize Nanowires," Chem. Mater., 14, 3564–3568(2002)

Zhang, Z., J. Ying, S.M. Dresselhaus, "Bismuth Quantum-Wire Arrays Fabricated by a Vacuum Melting and Pressure Injection Process," J. Mater. Res., 13, 1745~1748 (1998)

Zhao, D.,J.Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science, 279, 548-551(1998)

尹邦躍編撰, 奈米時代, 五南出版社, 台灣(2002)

王正全, 周淑金, 李秉璋, 王正和, ”金屬氧化物奈米模板製備及其應用簡介,” 工業材料, 185, 165–169(2002)

伍秀菁, 汪若文, 林美吟, 儀器總覽, 國科會精儀中心, 台灣(1998)

汪建民主編, 材料分析, 中國材料科學學會,台灣(1998)

林欣瑋, "奈米金屬線之製程研發及特性研究," 國立台灣大學碩士論文, 台灣(2002)
林逸欣, "以電化學沈積法製備含多層矽化鎘–鍗化鎘薄膜之奈米複合材料,"國立清華大學碩士論文, 台灣(2002)

范慧雯, "剪切力誘導PS–PLLA團聯共聚物奈米微結構定向–奈米圖案成形模板之製備," 國立中興大學碩士論文, 台灣(2003)

馬遠榮著, 奈米科技, 商周出版, 台灣(2002)

張立德, 牟季美, 奈米材料和奈米結構, 滄海書局, 台灣(2002)

莊萬發編撰, 超微粒子理論應用, 復漢出版社,台灣(1995)

黃永盛, "SEM/ESD 與 FIB 的原理及其在半導體工業之應用 ," 科儀新知, 17, 36–54(1995)

楊鴻昌, "超導量子干涉磁量儀," 科儀新知, 12, 6, 72–79(1991)

蘇品書編撰, 超微粒子材料技術, 復漢出版社, 台灣(1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top