跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李香寰
研究生(外文):Hsiang-Hwan Lee
論文名稱:鋰離子電池中碳極表面鈍化層之研究
論文名稱(外文):Studies of Solid Electrolyte Interphase on Carbon Surface in Lithium Batteries
指導教授:萬其超萬其超引用關係王詠雲
指導教授(外文):Chi-Chao WanYung-Yun Wang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:127
中文關鍵詞:鋰離子電池鈍化層介面碳極熱穩定性熱添加劑
外文關鍵詞:Lithium-ion batteriesSolid Electrolyte InterphaseInterphaseCarbonThermal StabilityThermal Additives
相關次數:
  • 被引用被引用:3
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池中,碳極(負極)上的鈍化層因是決定電池性能的關鍵因素,而受到廣泛的研究與注意。因此,本論文從三方面著手,分別探討化成程序的電位範圍、熱處理、以及熱添加劑乙烯碳酸酯(vinylene carbonate;VC)對此鈍化層造成的影響。所採用的分析工具包括X光線電子光譜(ESCA)、富利葉紅外光譜(FTIR)、差分掃瞄式卡計(DSC)、核磁共振光譜(NMR)、交流阻抗頻譜及一些標準的電化學分析技術。由化成電位對鈍化層形成的影響,我們發展出一套更快速的化成程序。此外,本論文也清楚點出造成鈍化層的熱不穩定性之原因,以及VC之所以能成為好的熱添加劑,其主要的功用所在。
目前鋰離子電池工業上慣用的化成程序事實上包含了兩個部分:鈍化層的長成程序以及鋰離子嵌入(充進)碳極的程序。後者其實佔了整個化成程序大部分的時間,因此不僅是浪費作業時間也浪費能源。在此論文中,我們提出一個新的化成觀念,亦即省略鋰離子嵌入的程序,使得化成程序僅負責鈍化層之長成,而此想法可以藉由縮小化成電位範圍來達成。我們的研究結果發現,對於標準的鋰離子電池(LiCoO2/C)而言,3.7 V是最佳的化成截止電位。在此狀況下,所需的時間不但明顯的縮短到少於傳統化成程序時間的1/3倍,而且電池的性能依然維持正常的水準。這是因為在此電位下,所形成的鈍化層已經符合電池所需,因此無須再提供更多的電能去增厚鈍化層或進行之後的鋰離子嵌入程序。這些結果顯示,我們所提出的化成程序比之現今慣用者,具有絕佳的優勢。
另外,我們的研究發現,鋰離子電池中所使用的導電鹽類,對鈍化層的熱穩定性有決定性的影響。根據FTIR結果顯示,鈍化層的主要組成為乙基碳酸鹽(ethylene carbonate;EC)的還原產物,他的結構決定了整個鈍化層所呈現出來的阻抗特性。在以六氟磷酸鋰(LiPF6)為鹽類的電解質中,鈍化層的阻抗會呈現時而減小、時而增大的震盪特性,這是由於此環境下的鈍化層具有熱不穩定性,因而在高熱環境下會有交互性的破損及重新生成的現象發生;然而,在以過氯酸鋰(LiClO4)為鹽類的電解質中,鈍化層卻不會被破壞,呈現相當穩定的阻抗特性。造成這兩個系統的差異就在於所使用的鹽類不同。此外,我們也找出LiPF6系統鈍化層熱不穩定的原因-為LiPF6在高溫之下熱分解產生的高反應性產物PF5,攻擊鈍化層與之反應所致。
最後,本論文由兩方面探討熱添加劑VC在鋰離子電池中所扮演的角色:(1)能否保護電解質中各組成防止其熱分解?(2)能否使得鈍化層具有熱穩定性?根據NMR圖譜的分析,VC在高溫系統下並不能防止LiPF6產生熱分解,因此高反應性產物PF5仍會產生。然而,由鈍化層的阻抗變化及ESCA分析結果顯示,在添加VC後所產生的鈍化層具有高分子型態的組成,且其在高溫之下能抵抗PF5的攻擊,具有相當的穩定性,有別於原本由EC還原所產生的鈍化層結構。此外,我們也證明了VC的加入能抑制高阻抗性的氟化鋰(LiF)形成於碳極表面,進而降低了介面阻抗,使得高溫充放電循環大幅改進其效率。
In lithium-ion batteries, solid electrolyte interphase (SEI) formed on carbon electrodes (negative electrodes) has been studied intensively due to its crucial impact on cycling performance of the cells. This dissertation presents the effects of formation potential range, heat treatment, and the thermal additive, vinylene carbonate (VC), on the formation and stability of SEI by electron spectroscopy for chemical analysis (ESCA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), AC impedance, and certain standard electrochemical techniques. A faster formation process is developed in this study. In addition, the source of thermal instability of SEI and the functions of VC are clearly identified.
The formation process presently used in the manufacture of lithium-ion batteries includes the solid electrolyte interphase (SEI) growth process and another process for lithium intercalation into carbon. The latter process is both time and energy consuming. This study proposes a new formation concept that can shorten the formation time by narrowing the potential range and bypassing the intercalation step during formation. The optimal cut-off voltage is found to be 3.7 V for industrial LiCoO2/C cells, and the formation time is markedly reduced to less than one-third of that required in the conventional formation procedure. Cycle performance is not affected significantly because the desired SEI growth is mainly completed in this potential range. These results suggest that our new formation method is superior to the conventional one.
The type of lithium salts (LiPF6 and LiClO4) was found to have a strong impact on the thermal stability of the SEI layer formed on graphite electrodes. According to FTIR spectra, the dominant species of the SEI layer is the EC reduction product. Hence, the change of the impedance of the SEI layer is determined by its structure. The oscillating phenomena of the thickness of SEI layer in the LiPF6-system can be attributed to an alternating deterioration and reformation of SEI, illustrating its inherent thermal instability. As for LiClO4 system, because it is less reactive, the build-up of the SEI layer is stable and gradual. In addition, PF5, a decomposition product of LiPF6, was identified to be a chief source of the thermal instability of SEI in the LiPF6-system.
Finally, the role of VC as a thermal additive to electrolytes in lithium ion batteries are studied in two aspects: the protection of liquid electrolyte species and the thermal stability of SEI formed from VC on graphite electrodes at elevated temperatures. The NMR spectra indicate VC can not protect LiPF6 salt from thermal decomposition. Hence, the thermally decomposed product PF5 still has the chance to attack SEI. However, the function of VC on SEI can be observed via impedance and ESCA. These results clearly show VC-induced SEI comprises polymeric species and is stable enough to resist thermal damage. It has been confirmed that VC can suppress the formation of resistive LiF, and thus reduce the interfacial resistance. These advantages leads to the improved cycling performance at elevated temperatures.
摘 要 I
ABSTRACT III
誌 謝 V
誌 謝 錄 VI
CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XV

Chapter 1 INTRODUCTION 1
1-1 Development Background of Lithium Batteries 2
1-2 Liquid Electrolytes 10
1-2.1 Solvents 11
1-2.2 Lithium salts 16
1-2.3 Additivies 18
1-3 Solid Electrolyte Interphase on Anode 21
1-3.1 Chemical composition of SEI 23
1-3.2 Morphology of SEI 31
1-3.3 Mechanisms of SEI formation 34
1-3.4 Relative Models of SEI 40
1-4 Motivation and Scope of This Study 45
1-5 References 47

Chapter 2 THE EFFECT OF FORMATION POTENTIAL ON THE SOLID ELECTROLYTE INTERPHASE 54
2-1 Experimental 55
2-2 Results and Discussions 56
2-3 Conclusions 68
2-4 References 71

Chapter 3 THERMAL STABILITY OF SOLID ELECTROLYTE INTERPHASE ON ELECTRODE 73
3-1 Experimental 74
3-2 Results and Discussions 76
3-2.1 Thermal characteristic of SEI 76
3-2.2 The impact of salt 83
3-2.2 The role of PF5 86
3-3 Conclusions 95
3-4 References 95

Chapter 4 THE FUNCTION OF VINYLENE CARBONATE AS A THERMAL ADDITIVE TO ELECTROLYTE 98
4-1 Experimental 99
4-2 Results and Discussions 101
4-2.1 Graphite cycling performance 101
4-2.2 Thermal reactions of electrolytes 103
4-2.3 Thermal reactions of SEI associated with VC 109
4-3 Conclusions 120
4-4 References 121

Chapter 5 CONCLUSIONS 124

ABOUT THE AUTHOR 126
[1] N. Eda and A. Ohta, Ch.2 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
[2] J. R. Owen, “Rechargeable lithium batteries”, Chemical Society Reviews, 26, 259-267 (1997).
[3] P. Arora, R. E. White, and M. Doyle, “Capacity fade mechanisms and side reactions in lithium-ion batteries”, J. Electrochem. Soc., 145, 3647-3667 (1998).
[4] Y. S. Jan and J. M. Chen, “Current development of lithium battery at ITRI”, in Proceedings of 2002 (6th) Taipei Battery Forum, 23-24 Apr. (2002).
[5] C. A. Vincent, “Lithium batteries: a 50-year perspective, 1959-2009”, Solid State Ionics, 134, 159-167 (2000).
[6] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 454, 359-367 (2001).
[7] M. S. Whittingham, “Insertion electrodes as SMART materials: the first 25 years and future promises”, Solid State Ionics, 134, 169-178 (2000).
[8] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems – The solid electrolyte interphase model”, J. Electrochem. Soc., 126, 2047-2051 (1979).
[9] S. Megahed and B. Scrosati, “Lithium-ion rechargeable batteries”, J. Power Sources, 51, 79-104 (1994).
[10] L. A. Dominey, Ch.4 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994).
[11] L. Bretherick, “Solvated metal perchlorates” Chem. and Eng. News, 68, 4 (1990).
[12] D. E. Penton, J. M. Parker, and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589 (1973).
[13] M. B. Armand, J. M. Chabagno, and M. Duclot, Ext Abstr., Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, 20-22 Sep. (1978).
[14] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999).
[15] K. Murata, S. Izuchi, and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 1501-1508 (2000).
[16] A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994).
[17] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995).
[18] S. Suzuki, “Toshiba battery new products for cellular phone, personal computer and power tools”, in Proceedings of 2000 (4th) Taipei Battery Forum, 25-26 Apr. (2000).
[19] D. Guyomard, Ch.9 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
[20] K. Kinoshita, Ch.8 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000).
[21] J. Barthel and H. J. Gores, Ch.7 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999).
[22] 竹原善一郎, Ch.6 in 高密度リチウム二次電池-その反應、材料と技術開發, 株式會社テクノツステム (1998).
[23] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochim. Acta, 45, 67-86 (1999).
[24] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, and Y. Cohen, “New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries”, J. Power Sources, 81-82, 95-111 (1999).
[25] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, “Insertion electrode materials for rechargeable lithium batteries”, Adv. Mater., 10, 725-763 (1998).
[26] C. R. Yang, Y. Y. Wang, and C. C. Wan, “Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte”, J. Power Sources, 72, 66-70 (1998).
[27] T. Kobayashi, Ch.5 in Report No.2: Materials for New Energy Technologies Focusing on Fuel Cells, Secondary Batteries and Hydrogen Utilization (Update-I), Japanese R&D Trend Analysis, KRI, Japan (1999).
[28] D. Aurbach, Y. Ein-Eli, B. Markovsky, Y. Carmeli, H. Yamin, and S. Luski, “The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition”, Electrochim. Acta, 39, 2559-2569 (1994).
[29] Y. Ein-Eli, S. R. Thomas, and V. R. Koch, “New electrolyte system for Li-ion battery”, J. Electrochem. Soc., 143, L195-L197 (1996).
[30] Y. Ein-Eli, S. R. Thomas, and V. R. Koch, “The role of SO2 as and additive to organic Li-ion battery electrolytes”, J. Electrochem. Soc., 144, 1159-1165 (1997).
[31] H. Gan and E. S. Takeuchi, “Dicarbonate additives for nonaqueous electrolyte rechargeable cells”, U.S. Patent No. 6,174,629 (2001).
[32] F. Coowar, A. M. Christie, P. G. Bruce, and C. A. Vincent, “Improving the performance of graphite anodes in rechargeable lithium batteries”, J. Power Sources, 75, 144-150 (1998).
[33] M. Contestabile, M. Morselli, R. Paraventi, and R. J. Neat, “A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells”, J. Power Sources, 119-121, 943-947 (2003).
[34] R. Oesten, U. Heider, and M. Schmidt, “Advanced electrolytes”, Solid State Ionics, 148, 391-397 (2002).
[35] S. S. Zhang, K. Xu, and T. R. Jow, “A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells”, Electrochem. Solid-State Lett., 5, A206-A208 (2002).
[36] E. Peled, D. Golodnitsky, and J. Penciner, Ch.6 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999).
[37] S. K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, “Surface film formation on graphite negative electrode in lithium-ion batteries. AFM study in an ethylene carbonate-based solution”, J. Electrochem. Soc., 148, A989-A993 (2001).
[38] S. Geniès, R. Yazami, J. Garden, and J. C. Frison, “SEM and FT-IR characterization of the passivation film on lithiated mesocarbon fibers”, Synthetic Metals, 93, 77-82 (1998).
[39] D. Aurbach, Y. Gofer, M. Ben-Zion, and P. Aped, “The behavior of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency”, J. Electroanal. Chem., 339, 451-471 (1992).
[40] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochim. Acta, 45, 67-86 (1999).
[41] M. Moshkovich, M. Cojocaru, H. E. Gottlieb, and D. Aurbach, “The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS”, J. Electroanal. Chem., 497, 84-96 (2001).
[42] P. Novák, F. Joho, R. Imhof, J. C. Panitz, and O. Haas, “In situ investigation of the interaction between graphite and electrolyte solutions”, J. Power Sources, 81-82, 212-216 (1999).
[43] K. Suzuki, T. Hamada, and T. Sugiura, “Effect of graphite surface on initial irreversible reaction in graphite anodes”, J. Electrochem. Soc., 146, 890-897 (1999).
[44] J. S. Shin, C. H. Han, U. H. Jung, S. I. Lee, H. J. Kim, and K. Kim, “Effect of Li2CO3 additive on gas generation in lithium-ion batteries”, J. Power Sources, 109, 47-52 (2002).
[45] H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, and M. Yamachi, “Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging”, J. Power Sources, 68, 311-315 (1997).
[46] K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, and R. Ishikawa, “Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell”, J. Power Sources, 81-82, 715-719 (1999).
[47] A. Ohta, H. Koshina, H. Okuno, and H. Murai, “Relationship between carbonaceous materials and electrolyte in secondary lithium-ion batteries”, J. Power Sources, 54, 6-10 (1995).
[48] D. Aurbach, A. Zaban, O. Chusid, and I. Weissman, “LiC(SO2CF3)3, a new salt for Li battery systems. A comparative study of Li and non-active metal electrodes in its ethereal solutions using in situ FTIR spectroscopy”, Electrochim. Acta, 41, 747-760 (1996).
[49] I. Ismail, A. Noda, A. Nishimoto, M. Watanabe, “XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes”, Electrochim. Acta, 46, 1595-1603 (2001).
[50] D. Aurbach, I. Weissman, and A. Schechter, “X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier Transform Infrared Spectroscopy”, Langmuir, 12, 3991-4007 (1996).
[51] A. Schechter, D. Aurbach, and H. Cohen, “X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions”, Langmuir, 15, 3334-3342 (1999).
[52] K. Kanamura, S. Shiraishi, H. Tamura, and Z. I. Takehara, “X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents”, J. Electrochem. Soc., 141, 2379-2385 (1994).
[53] D. Aurbach, I. Weissman, A. Zaban, and P. Dan, “On the role of water contamination in rechargeable Li batteries”, Electrochim. Acta, 45, 1135-1140 (1999).
[54] D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot “Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems”, J. Power Sources, 68, 91-98 (1997).
[55] M. Winter, “An overview on SEI formation processes of lithium battery anodes in organic solvent based electrolyte”, in C4, Proceedings of 2003 Taipei Power Forum, Taipei, Taiwan, 1-3 Dec. (2003).
[56] M. Yoshio, “Materials for Lithium-ion Batteries”, in C1, Proceedings of 2002 (6th) Taipei Power Forum, Taipei, Taiwan, 23-25 Apr. (2002).
[57] F. Orsini, A. D. Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. D. Beer, and P. Notten, “In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries”, J. Power Sources, 76, 19-29 (1998).
[58] A. Naji, J. Ghanbaja, P. Willmann, and D. Billaud, “TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes”, J. Power Sources, 81-82, 207-211 (1999).
[59] D. Zane, A. Antonini, and M. Pasquali, “A morphological study of SEI film on graphite electrodes”, J. Power Sources, 97-98, 146-150 (2001).
[60] R. Yazami, “Surface chemistry and lithium storage capability of the graphite- lithium electrode”, Electrochim. Acta, 45, 87-97 (1999).
[61] D. Aurbach, M. Koltypin, and H. Teller, “In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion”, Langmuir, 28, 9000-9009 (2002).
[62] S. K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, “AFM study of surface film formation on a composite graphite electrolyte in lithium-ion batteries”, J. Power Sources, 119-121, 555-560 (2003).
[63] M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, “Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate”, J. Power Sources, 68, 221-226 (1997).
[64] M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, “Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution”, Langmuir, 12, 1535-1540 (1996).
[65] S. K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, “Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions”, Electrochim. Acta, 47, 1975-1982 (2002).
[66] D. Aurbach and Y. Ein-Eli, “The study of Li-Graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction”, J. Electrochem. Soc., 142, 1746-1752 (1995).
[67] M. Koltypin, Y. S. Cohen, B. Markovsky, Y. Cohen, and D. Aurbach, “The study of lithium insertion-deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM)”, Electrochem. Commun., 4, 17-23 (2002).
[68] D. Alliata, R. Kötz, P. Novák, and H. Siegenthaler, “Electrochemical SPM investigation of the solid electrolyte interphse film formed on HOPG electrodes”, Electrochem. Commun., 2, 436-440 (2000).
[69] D. Aurbach, “Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries”, J. Power Sources, 89, 206-218 (2000).
[70] A. Zaban and D. Aurbach, “Impedance spectroscopy of lithium amd nickel electrodes in propylene carbonate solutions of different lithium salts. A comparative study”, J. Power Sources, 54, 289-295 (1995).
[71] M. D. Levi and D. Aurbach, “Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium”, J. Phys. Chem. B, 101, 4630-4640 (1997).
[72] B. Markovsky, M. D. Levi, and D. Aurbach, “The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes”, Electrochim. Acta, 43, 2287-2304 (1998).
[73] C. R. Yang, J. Y. Song, Y. Y. Wang, and C. C. Wan, “Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries”, J. Appl. Electrochem., 30, 29-34 (2000).
[74] D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, and H. Yamin, “The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes”, J. Electrochem. Soc., 141, 603-611 (1994).
[75] Y. Ein-Eli, “A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells”, Electrochem. Solid-State Lett., 2, 212-214 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top