跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔建同
論文名稱:利用Streptomycesclavuligerus以進料批式操作下生產clavulanicacid之研究
指導教授:陳國誠陳國誠引用關係黃世傑黃世傑引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:72
中文關鍵詞:甘油進料
外文關鍵詞:Streptomyces clavuligerusclavulanic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Clavulanic acid是一種由Streptomyces clavuligerus發酵生產的β-lactamase抑制劑,醫療上經常合併使用clavulanic acid與amoxicillin。本論文利用批式與進料批式的操作,以S. clavuligerus進行clavulanic acid的發酵生產,探討大豆萃取液與clavulanic acid的前驅物甘油、ornithine、arginine對其生化合成的影響,並尋求最適的前驅物及其進料量,以及建立進料批式操作的方法。在搖瓶培養過程中,含有大豆萃取液(TKN=0.59 g/L)會有較佳的clavulanic acid產量,而進料批式操作的過程中,利用間歇進料的方式,將甘油持續進料到培養液內,其所生成clavulanic acid的最高濃度是未進行glycerol進料的2.3倍。同時進行甘油和ornithine或arginine的進料,所生成的clavulanic acid濃度分別是未進行glycerol進料的2.7、2.8倍。甘油的進料添加能夠提供clavulanic acid分子左側結構上β-lactam環的前驅物,而ornithine或arginine的添加則能提供clavulanic acid分子右側結構上C5-moiety的前驅物,這顯示甘油和ornithine或arginine能有效率地構成clavulanic acid。
Clavulanic acid is one of the fermentation products through secondary metabolism by Streptomyces clavuligerus. It is also a specific and irreversible inhibitor of a wide range of bacterial β-lactamases. Clavulanic acid has been used in human therapy for several years in combination with amoxicillin. The purpose of this study is to investigate the effects of different precursors and soy meal extract on the biosynthesis of clavulanic acid using S. clavuligerus in batch and fed-batch fermentations. A regularly intermittent feeding strategy was employed to obtain the maximum productivity of clavulanic acid when different feed medium was used to improve the production. The medium containing soy meal extract with the TKN concentration of 0.59 g/L was optimum. Intermittently feeding the medium containing glycerol to the shake flask cultures resulted in the maximum production of clavulanic acid being 2.3-fold higher than that with no additional feeding. Intermittent feeding simultaneously with glycerol and ornithine (or arginine) resulted in the maximum production of clavulanic acid being 2.7-fold (or 2.8-fold) higher than that with no feeding. The fed batch result indicates that glycerol is an important precursor of the β-lactam moiety(C-5,C-6, and C-7), whereas ornithine (or arginine) is an important precursor of C5-moiety. Both glycerol and ornithine (or arginine) exert a stimulation of the biosynthesis of clavulanic acid, and they are efficiently incorporated into clavulanic acid.
1. Rollinson, G. N. (1994) A review of the microbiology of amoxycillin/clavulanic acid over the 15 year period 1978-1993. Journal of Chemotherapy 6(5), 283-318.
2. 2002生技產業白皮書
3. 羅麗珠 (1998) 生技產值-歷史到未來. 工業簡訊 28(10), 46-52.
4. 劉英俊 (1996) 最新微生物應用工業. 中央圖書出版社, 台北市, pp.182-190.
5. 楊春茂, 楊聖信, 許桂森, 林君穎, 張國志 (1997) 人體藥理學. 藝軒圖書出版社, 台北市, pp.626-662.
6. Brown, A. G., Butterworth, D., Cole, M., Hanscomb, G., Hood, J.D., Reading, C. and Robinson, G. N. (1976) Naturally occurring β-lactamase inhibitors with antibacterial activity. Journal of Antibiotics 29, 668-669.
7. Betina, V. (1994) Bioactive secondary metabolites of microorganisms. Elsevier Science Publishers BV, Amsterdam, Netherlands.
8. Liras, P. and Rodriguez-Garcia, A. (2000) Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics. Applied Microbiology and Biotechnology 54, 467-475.
9. Brody, T. M., Larner, J. and Minneman, K. P. (1998) Human pharmacology, molecular to clinical. Mosby-Year Book, Inc., Saint Louis, MO.
10. Hsu, L. Y. (1991) Antibacterial activities of amoxicillin alone and in combination with clavulanic acid correlated with β-lactamase production. Chinese Journal of Microbiology Immunology 24, 272-280.
11. Hsueh, P. R., Chang, S. C., Chen, Y. C., Hsu, L. Y., Luh, K. T. and Hsieh, W. C. (1992) In vitro antibacterial activities of ticarcillin alone and ticarcillin plus clavulanic acid against β-lactamase producing and non-producing microorganisms. Chinese Journal of Microbiology Immunology 25, 149-159.
12. Higgens, C. E. and Kastner, R. E. (1971) Streptomyces clavuligerus sp. nov. a β-lactamases antibiotics producer. International Journal of Systematic Bacteriology 21, 326-331.
13. Buchanan, R. E. and Gibbons, N. E. (1974) Group 25: Streptomycetes and related genera. In: Buchanan, R. E. and Gibbons, N. E. (Eds.), Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, MD, pp.667-675.
14. Hopwood, D. A. (1981) Genetic studies of antibiotics and other secondary metabolites. In: Glover, S. W. and Hopwood, D. A. (Eds.), Symposia of the Society for General Microbiology: Genetics as a Tool in Microbiology. Cambridge University Press, Cambridge, pp.187-218.
15. Nagarajan, R. (1972) β-Lactam antibiotics from Streptomyces. In: Flynn, E. H. (Ed.), Cephalosporin and penicillins: Chemistry and biology. Academic Press, New York, pp.636.
16. Reading, C. and Cole, M. (1977) Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 11, 852-857.
17. Box, S. J. (1978) Preparation of clavulanic using Streptomyces jumonjinensis. Beecham Group Ltd. US patent: 4072569.
18. Kitano, K. (1983) New species Streptomyces katsurahamanus. Takeda Yakuhin Kogyo. JP patent: 58081778.
19. Okamurak, K. (1980) Preparation of clavulanic acid. Sanraku Inc. JP patent: 55162993.
20. Butterworth, D. (1984) Clavulanic acid: properties, biosynthesis, and fermentation. In: Vandamme, E. J. (Ed.), Biotechnology of Industrial Antibiotics, Chap 6. Marcel Dekker, New York, pp.225-235.
21. Baggaley, K. H., Brown, A. G. and Schofield, C. J. (1997) Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports 14, 309-333.
22. Hodgson, J. E., Fosberry, A. P., Rawlinson, N. S., Ross, H. N. M., Neal, R. J., Arnell, J. C., Earl, A. J. and Lawlor, E. J. (1995) Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. Journal of Genetics 166, 49-55.
23. Thirkettle, J. E., Baldwin, J. E., Edwards, J., Griffin, J. P. and Schofield, C. J. (1997) The origin of theβ-lactam carbons of clavulanic acid. Journal of the Chemical Society: Chemical Communications 1025-1026.
24. Khaleeli, N., Li, R. and Townsend, C. A. (1999) Origin of the β-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. Journal of the American Chemical Society 121, 9223-9224.
25. Jensen, S. E. and Paradkar, A. S. (1999) Biosynthesis and molecular genetics of clavulanic acid. Antonie van Leeuwenhoek 75, 122-133.
26. Paradkar, A. S., Aidoo, K. A. and Jensen, S. E. (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Molecular Microbiology 27, 831-843.
27. Egan, L. A., Busby, R. W., Iwata-Reuyl, D. and Townsend, C. A. (1997) Probable role of clavaminic acid as the terminal intermediate in the common pathway to clavulanic acid and the antipodal clavam metabolites. Journal of the American Chemical Society 119, 2348-2355.
28. Nicholson, N. H., Baggaley, K. H., Cassels, R., Davison, M., Elson, S. W., Fulston, M., Tyler, J. W. and Wononieck, S. R. (1994) Evidence that the intermediate biosynthetic precursor of clavulanic acid is its N-aldehyde analogue. Journal of the Chemical Society: Chemical Communications 1281-1282.
29. McGowan, S. J., Bycroft, B. W. and Salmond, G. P. C. (1998) Bacterial production of carbapenems and clavams: evolution of β-lactam antibiotic pathways. Trends in Microbiology 6, 203-208.
30. Aharonowitz, Y. and Demain, A. L. (1978) Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 14, 159-164.
31. Romero, J., Liras, P. and Martin, J. F. (1984) Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology 20, 318-325.
32. Elson, S. W. and Oliver, R. S. (1978) Studies on the biosynthesis of clavulanic acid: I. Incorporation of 13C-labelled precursors. The Journal of Antibiotics 31, 586-592.
33. Garcia-Dominguez, M., Martin, J. F. and Liras, P. (1989) Characterization of sugar uptake in wild-type Streptomyces clavuligerus, which is impaired in glucose uptake, and in a glucose-utilizing mutant. Journal of Bacteriology 171, 6808-6814.
34. Choi, D. B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S. (1996) Efficient tylosin production from Streptomyces fradiae using rapeseed oil. Journal of Fermentation and Bioengineering 82, 183-186.
35. Lee, P. C. and Ho, C. C. (1996) Production of clavulanic acid and cephamycin C by Streptomyces clavuligerus in palm-oil medium. World Journal of Microbiology and Biotechnology 12, 73-75.
36. Mayer, A. F. and Deckwer, W. D. (1996) Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Applied Microbiology and Biotechnology 45, 41-46.
37. Gouveia, E. R., Baptista-Neto, A., Azevedo, A. G., Badino-Jr, A. C. and Hokka, C. O. (1999) Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World Journal of Microbiology and Biotechnology 15, 623-627.
38. Pruess, D. L. and Kellett, M. Ro-22-5417 (1983) A new clavam antibiotic from Streptomyces clavuligerus: I. Discovery and biological activity. Journal of Antibiotics 36, 208-212.
39. Gutman, A. L., Ribon, V. and Boltansk, A. (1985) Incorporation of β-hydroxypropionate in the β-lactam residue of clavulanic acid. Journal of the Chemical Society: Chemical Communications 1627-1629.
40. Townsend, C. A. and Mao, S. S. (1987) Clavulanic acid biosynthesis: the stereochemical course of β-lactam formaion from chiral glycerol. Journal of the Chemical Society: Chemical Communications 86-89.
41. Stryer, L. (1995) Stryer’s Biochemistry. W. H. Freeman and Company, New York.
42. Aharonowitz, Y. and Demain, A. L. (1979) Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Canadian Journal of Microbiology 25, 61-67.
43. Brana, A. F., Wolfe, S., and Demain, A. L. (1986) Relationship between nitrogen assimilation and cephalosporin synthesis in S. clavuligerus. Archives Microbiology 146, 46-51.
44. Fernandez, J. L., Moreno, M. A., Salto, F., Oheros, T. and Costa, L. (1989) Preparation of clavulanic acid and its salts and esters. Antibioticos. EP patent: 0182522 B1.
45. Otero, R., Valle, M., De-La-Vieja C. and Alba, V. (1997) Process for the production of clavulanic acid and/or salts thereof. Antibioticos. WO patent: 9719187.
46. Belmar-Beiny, M. T. and Thomas, C. R. (1991) Morphology and clavulanic acid production of Streptomyces clavuligerus: Effect of stirrer speed in batch fermentation. Biotechnology and Bioengineering 37, 456-462.
47. Romero, J., Liras, P. and Martin, J. F. (1986) Utilization of ornithine and arginine as specific precursors of clavulanic acid. Applied and Environmental Microbiology 52, 892-897.
48. Porto, A. L. F., Campos-Takaki, G. M. and Lima-Filho J. L. (1996) Effects of culture conditions on pretease production by Streptomyces clavuligerus growing on soy bean flour medium. Applied Biochemistry and Biotechnology 60, 115-122.
49. Townsend, C. A. and Ho, M. F. (1985) Biosynthesis of clavulanic acid: Origin of the C5 Unit. Journal of the American Chemical Society 107, 1065-1066.
50. Townsend, C. A., Ho, M. F. and Mao, S. S. (1986) The stereochemical fate of (2RS,5R)- and (2RS,5S)-[5-3H] Ornithine in clavulanic acid biosynthesis. Journal of the Chemical Society: Chemical Communications 638-639.
51. Bycroft, B. W., Penrose, A., Gillett, J. and Elson, S. W. (1988) The incorporation of DL-[4-2H2,5-13C] Ornithine into clavulanic acid and N-Acetylglycylclavaminic acid. Journal of the Chemical Society: Chemical Communications 980-981.
52. Elson, S. W. (1981) In: Gregory, G. I. (Ed.), Recent Advance in the Chemistry of β-lactam Antibiotics. Royal Society of Chemistry, London, pp. 142-150.
53. Elson, S. W. and Oliver, R. S. (1982) Studies on the biosynthesis of clavulanic acid.Ⅲ. Incorporation of DL-[3,4-13C2] glutamic acid. The Journal of Antibiotics 35, 81-86.
54. Elson, S. W. (1989) In: Bentley, P. H. and Southgate, R. (Eds.), Recent Advance in the Chemistry of β-lactam Antibiotics. Royal Society of Chemistry, London, pp. 303-320.
55. Townsend, C. A. and Ho, M. F. (1985) Biosynthesis of clavulanic acid: Origin of the C3 Unit. Journal of the American Chemical Society 107, 1066-1068.
56. Valentine, B. P., Bailey, C. R., Doherty, A., Morris, J., Elson, S. W., Baggaley, K. H. and Nicholson, N. H. (1993) Evidence that arginine is a late metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus. Journal of the Chemical Society: Chemical Communications 1210-1211.
57. Kirk, S., Avignone-Rossa, A. and Bushell, M. E. (2000) Growth limiting substrate affects antibiotic production and associated metabolic fluxes in S. clavuligerus. Biotechnology Letters 22, 1803-1809.
58. Fulston, M., Davison, M., Elson, S. W., Nicholson, N. H., Tyler, J. W. and Woroniecki, S. R. (2001) Clavulanic acid biosynthesis; the final steps. Journal of the Chemical Society: Perkin Transactions 1, 1122-1130.
59. De-la-Fuente, J. L., Martin, J. F. and Liras, P. (1996) New type of hexameric ornithine carbamoltransferase with arginase activity in the cephamycin producers Streptomyces clavuligerus and Nocardia lactamdurans. The Biochemical Journal 320, 173-179.
60. 陳國誠 (1992) 微生物酵素工程學. 藝軒圖書出版社, 台北市.
61. Modak, J. M., Lim, H. C. and Tayeb, Y. L. (1986) General characteristics of optimal feed rate profiles for various fed-batch processes. Biotechnology and Bioengineering 28, 1396-1406.
62. Pirt, S. J. (1975) Principles of Microbes and Cell Cultivation. John Wiley, New York.
63. Ates, S., Elibol, M. and Mavituna, F. (1997) Production of actinorhodin by Streptomyces coelicolor in batch and fed-batch cultures. Process Biochemistry 32, 273-278.
64. Lee, S. Y. (1996) High cell-density of Escherichia coli. Trends in Biotechnology 14, 98-105.
65. Yamada, H., Suzuki, T. and Shimizu, K. (1993) Efficient pH-stat methods for fed-batch E. coli cultivation. Process Control and Quality 5, 29-34.
66. Yano, T., Kurokawa, M., Nishizawa, Y. (1991) Optimum substrate feed rate in fed-batch culture with the DO-stat method. Journal of Fermentation and Bioengineering 71, 345-349.
67. Foulstone, M. and Reading, C. (1982) Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with HPLC. Antimicrobial Agents and Chemotherapy 22, 753-762.
68. Mccullough, H. (1967) The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 17, 297-304.
69. Andrietta, M. G. S., Andrietta, S. R., Rodrigues, M. V. N., Hokka, C. O. and Serra, G. E. (1997) Selection of industrial complex medium for cephalosporin C production. Journal of the Brazilian Society for Microbiology 28, 109-113.
70. Lounes, A., Lebrihi, A., Benslimane, C., Lefebvre, G. and Dermain, P. (1996) Effect of nitrogen/carbon ratio on the specific production rate of spiramycin by Streptomyces ambofaciens. Process Biochemistry 31(1), 13-20.
71. Suzuki, T., Yamane, T. and Shimizu, S. (1988) Effect of ammonium feeding on production of thiostrepton by fed-batch culture. Applied Microbiology and Biotechnology 28, 188-192.
72. Ives, P. R. and Bushell, M. E. (1997) Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 143, 3573-3579.
73. Park, S. Y., Momose, I., Tsunoda, K. and Okabe, M. (1994) Enhancement of cephamycin C using soybean oil as the sole carbon source. Applied Microbiology and Biotechnology 40, 773-779.
74. Hu, W. S., Brana, A. F. and Demain, A. L. (1984) Carbon source regulation of cephem antibiotic production by resting cell of Streptomyces clavuligerus and its reversal by protein synthesis inhibitors. Enzyme and Microbial Technology. 6, 155-160.
75. White, R. L., John, E-M. M., Baldwin, J. E., Abraham, E. P. (1982)
Stoichiometry of oxygen consumption in the biosynthesis of
isopenicillin from a tripeptide. Biochem. J.;203, 791-793.
76. Mitsuyasu, O., Takeshi, K., Michikatsu, S., Kiyoshi, K., Kazuhiko, O., Rokuro, O. (1992) Preferential and High-Yield Production of a Cephamycin C by Dissolved Oxygen Controlled Fermentation. Journal of fermentation and bioengineering.;vol. 73, No. 4, 292-296
77. Peddie, C. C., Mavinic, D. S. and Jenkins, C. J. Use of ORP for monitoring and control of aerobic sludge digestion. J. Environmental Engineer. 1990, 116, 461-471.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top