跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭俊宏
研究生(外文):Chun-Hong Kuo
論文名稱:以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
論文名稱(外文):Seeding Growth Approach to the Synthesis of Highly Faceted Au Nanoparticles and Branched Au Nanocrystals
指導教授:黃暄益
指導教授(外文):Michael H. Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:81
中文關鍵詞:植晶截面奈米粒子奈米晶體分支
外文關鍵詞:seeding growthfacetedAubranchnanoparticlenanocrystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
奈米材料是近幾十年來非常熱門的尖端材料。其吸引中科學家注目的主要原因,在於隨尺寸大小、形狀而改變,有別於塊材的特殊物理及化學性質。為了能將奈米材料這些特殊的性質成功應用於科技、醫藥等各方面上,製作奈米材料的成熟技術是不可或缺的。要將材料成功的應用,材料的一致性是不可忽略,所以合成技術首重於控制。
在過去兩年中,本實驗室已成功地利用植晶法合成出大量尺寸一致且具明顯截面的金奈米粒子,以及具分支結構的金奈米晶體。所謂植晶法,即是將小尺寸的粒子與成長溶液(含所欲合成材料之前趨物離子溶液)混合,再加入還原劑將離子還原成原子,而還原出的原子會憑藉著加入的晶核粒子堆積,成長出較大的粒子。為了控制最後合成出來奈米材料的大小與形狀,界面活性劑的存在是必要的。界面活性劑的濃度高於臨界微胞濃度時會形成微胞,且依其本身的性質、不同濃度(高於臨界微胞濃度)、溫度,甚至是溶劑的極性而產生不同形式的微胞。由於微胞可以去包覆金屬表面,限制奈米材料成長的空間維度,所以採用不同條件改變微胞的形式,也就可以合成出各式各樣不同的奈米材料,這種利用微胞的方法也是目前世界上最為廣泛運用的合成法。
在本篇論文收錄的實驗系統中,我們採用2.5 nm的金奈米粒子當作晶核;氯金酸(HAuCl4)的水溶液當作成長溶液;利用十二烷磺酸鈉(sodium dodecyl sulfate)當作保護劑,防止粒子聚集並且控制粒子大小;還原劑則是用維他命C。在整個實驗中,改變氯金酸濃度與維他命C濃度,可製作出大量具截面的奈米金粒子或是具分支結構的金奈米晶體。為了去了解其結構以及成長機構,我們亦做了粉末X-Ray繞射、穿透式電子顯微鏡以及高解析穿透式電子顯微鏡的鑑定。鑑定結果顯示不論截面奈米金粒子或是分支結構金奈米晶體,大部分皆是由{111}晶面構成。我們亦推測粒子的截面主要是由於十二烷磺酸鈉所構成的層狀微胞所誘導形成,而分支的產生則與微胞、維他命C的酸根離子間的交互作用有極大的關係。根據所有數據顯示結果,我們非常相信欲將此兩種新穎且具特別形狀結構的金奈米材料,在經過更進一步的探討與開發後,應用於電子元件或其他用途上將不是夢想。
Nanoscale materials are a new generation of advanced materials that are expected to exhibit unusual chemical and physical properties different from those of either the bulk materials or molecules. The unique properties of nanoscale materials are largely determined by their atomic scale structures, particularly the structures and property-modifying species on the surfaces. Thus the ability to controllably grow nanoparticles of a particular size and shape offers the opportunity to observe novel physical properties and can extend our understanding of the size and shape effects on the properties of nanoscale materials. This thesis work was directed at the synthesis of highly faceted gold nanoparticles with well-controlled particle size distribution and the formation of branched Au nanocrystals. In both cases, a seeding growth approach was adopted. The seeding growth procedure involves using small Au nanoparticles (~2.5 nm in diameter) as seeds to grow into larger Au nanoparticles by mixing the seed solution with a growth solution (a solution containing the capping surfactant sodium dodecyl sulfate and the Au source HAuCl4) in the presence of a reductant ascorbic acid. Micelles formed by the aggregation of sodium dodecyl sulfate molecules were used as soft templates to control the crystal growth. Highly faceted particles exhibiting pentagonal- and hexagonal-shaped structures with controllable diameters ranging from 5 to 50 nm have been obtained. The formation of highly faceted gold nanoparticles may be facilitated by the possibly ineffective capping interaction between the lamellar micellar structures formed by the SDS moclecules and the gold nanoparticles. Using a similar seeding growth method, branched gold nanocrystals with highly faceted faces were synthesized (~40 nm in length). The branched nanocrystals showed bipod, tripod, tetrapod, and pentapod structures. To further investigate the structures and the growth mechanisms leading to these unusual Au nanoparticles, analysis of these samples were performed by using UV-Vis absorption spectroscopy, X-ray diffraction, TEM and HRTEM characterization methods.
According to both TEM and XRD results, the crystal structure of the highly faceted particles was found to consist of mostly {111} surfaces as particle size increases. Similarly, arms of the branched nanocrystals are also composed of {111} lattice planes. The multipods appear to grow along the twin boundaries of the highly faceted gold nanoparticles, as the twin boundaries on the pods originate from the centers of the nanoparticles. In the determination of the factors contributing to the formation of branched nanocrystals, the concentration of ascorbate ion was found to play a key role than that of hydrogen ions. These branched nanocrystals are stable to storage at 4 ˚C, but slowly evolve into the highly faceted crystal structures when kept at a high temperature (i.e. at 30 ˚C for 10 days). These novel and highly structured gold nanoparticles are expected to lead to new applications as they possess interesting colors and tunable light absorption properties.
TABLE OF CONTENTS

Title Page i
Abstract of The Thesis ii
Acknowledgment v
Table of Contents vii
List of Figures x
List of Tables xiv

CHAPTER 1 THE BACKGROUND KNOWLEDGE

1.1 Introduction 1
1.2 Size- and Shape-Dependent Properties 3
1.3 Basic Knowledge of Nanomaterials – Metal 11
Nanocrystal Cases
1.3.1 Formation of Metal Particles – Mechanism 12
Discussion
1.3.2 Methods for Preparation of Monodispersive 16
Metal Nanoparticles
1.3.3 Shape Control of Nanomaterials 20
1.3.4 Analysis of Self-Assembly 23
1.4 References 29

CHAPTER 2 SYNTHESIS OF HIGHLY FACETED PENTAGONAL- AND HEXAGONAL-SHAPED GOLD NANOPARTICLES WITH CONTROLLED SIZES BY SODIUM DODECYL SULFATE

2.1 Introduction 34
2.2 Experimental Section 35
2.2.1 Synthesis of Gold Seeds 35
2.2.2 Preparation of Growth Solution 36
2.2.3 Synthesis of Size- and Shape-controlled 36
Gold Nanoparticles
2.3 Results and Discussion 39
2.4 Summary 52
2.5 References 54

Chapter 3 SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS BY A SEEDING GROWTH APPROACH

3.1 Introduction 58
3.2 Experimental Section 60
3.2.1 Synthesis of 2.5 nm Gold Seeds 60
3.2.2 Preparation of Growth Solution 60
3.2.3 Synthesis of Gold Nanocrystal 61
3.3 Results and Discussion 62
3.4 Conclusion 79
3.5 References 80
CHAPTER 1 THE BACKGROUND KNOWLEDGE

1. Wong, E.; Boyd, R.S. Knight Rider Newspapers 1999, Monday, November 8.
2. Klabunde, J. K. (Editor) Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
3. Bradley, J. S.; Hill, E. W.; Behal, S.; Klein, C.; Chaudret B.; Duteil, A. Chem. Mater. 1992, 4, 1234.
4. Porta, F.; Ragaini, F.; Cenini, S.; Scari, G. Chim. Ital., 1992, 122, 361.
5. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
6. Hummel, R. E.; Wissmann, P. (Editors) Handbook of Optical Properties,,Vol. II, Optics of Small Particles, Interfaces and Surfaces, CRC Press, Boca Raton, FL, 1997.
7. Chang, S. S.; Wang, C. R. Langmuir 1999, 15, 701.
8. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
9. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Chem. Commun., 1996, 731.
10. Goia, D. V.; Matijevic, E. New J. Chem. 1998, 1203.
11. Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. Adv. Mater. 1997, 9, 817.
12. Faraday, M. Phil. Trans. Roy. Soc., 1857, 147, 145.
13. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
14. Jiang, X.; Xie, Y. ; Lu, J.; Zhu, L.; He, W.; Qian, Y. Langmuir 2001, 17, 3795.
15. Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, H. T. Chem. Mater. 2003, 15, 4172.
16. Su, C. H.; Wu, P. L.; Yeh, C. S. J. Phys. Chem. B 2003, 107, 14240.
17. Fujimoto, T.; Terauchi, S.; Umehara, H.; Kojima, I.; Henderson, W. Chem. Mater. 2001, 13, 1057.
18. Liu, F. K.; Ker, C. J.; Chang, Y. C.; Ko, F. H.; Chu, T. C.; Dai, B. T. J. Appl. Phys. 2003, 42, 4152.
19. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
20. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
21. Maillard, M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611.
22. Jana, N. R.; Geaheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065.
23. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
24. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir 2002, 18, 922.
25. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
26. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313.
28. Choi, J.; Sauer G.; Nielsch, K.; Wehrspohn, R. B.; Gosele, U. Chem. Mater. 2003, 15, 776.
29. Luan, Z.; Maes, E. M.; Zhao, D.; Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680.
30. Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 481.
31. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
32. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
33. Fievet, F.; Lagier, J. P.; Figiarz, M. Mater. Res. Soc. Bull. 1989, 14, 29.
34. Turkevich, J.; Stevenson, P. C.; Hiller, J. J. Discuss. Faraday Soc. 1951, 11, 55.
35. Milligan, W. O.; Morriss, R. H. J. Am. Chem. Soc. 1964, 86, 3461.
36. Bruche, B. Kolloid-Z. 1960, 170, 97.
37. Curtis, A. C. Angew. Chem. Int. Ed. Engl. 1988, 27, 1530.
38. Duff, D. G.; Edwards, P. P.; Johnson, B. F. G. J. Phys. Chem. 1995, 99, 15934.
39. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
40. Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459.
41. Chen, C. C.; Lin, J. J. Adv. Mater. 2001, 13, 136.
42. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924.
43. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
44. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
45. Wang, Z. L. Adv. Mater. 1998, 10, 13.
46. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
47. Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Cleveland, C. C.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
48. Dorogi, J.; Gomez J.; Osifchin, R.; Andres, R. P.; Refenberger, R. Phys. Rev. B 1995, 52, 9071.
49. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.
50. S. Harfenist, A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904.
51. Heath, J. R.; Knobler, C. M.; Leff, D. V. J. Phys. Chem. B 1997, 101, 189.
52. Motte, L.; Billoudet, F.; Lacaze, E.; Pileni, M.-P. Adv. Mater. 1996, 8, 1018.
53. Motte, L.; Billoudet, F.; Lacaze, E.; Douin, J.; Pileni, M.-P. J. Phys. Chem. B 1997, 101, 138.
54. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
55. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc., Chem. Commun. 1995, 1655.
56. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 266, 91.
57. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
58. Alvarex, M. M.; Khoury J. T.; Schaaff T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 79, 1873.

CHAPTER 2 SYNTHESIS OF HIGHLY FACETED PENTAGONAL- AND HEXAGONAL-SHAPED GOLD NANOPARTICLES WITH CONTROLLED SIZES BY SODIUM DODECYL SULFATE

1. Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808.
2. Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655.
3. Xu, P.; Yanagi, H. Chem. Mater. 1999, 11, 2626.
4. Taton, T. A.; Mirkin, C. A.; Lestinger, R. L. Science 2000, 289, 1757.
5. Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Lestinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674.
6. Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808.
7. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508.
8. (a) Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 8708. (b) Teranishi, T.; Hasegawa, S.; Shimizu, T.; Miyake, M. Adv. Mater. 2001, 13, 1699. (c) Teranishi, T.; Sugawara, A.; Shimizu, T.; Miyake, M. J. Am. Chem. Soc. 2002, 124, 4210. (d) Wang, Z. L. Adv. Mater. 1998, 10, 13.
9. (a) He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. Y.; Liu, Z. F. Langmuir 2000, 16, 3846. (b) Zheng, J.; Zhu, Z.; Chen, H.; Liu, Z. Langmuir 2000, 16, 4409.
10. Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 892.
11. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746.
12. (a) Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C.-J. J. Am. Chem. Soc. 2002, 124, 4958. (b) Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.-J. Langmuir 2000, 16, 490.
13. Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979.
14. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922.
15. Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-H. J. Phys. Chem. B 2004, 108, 2134.
16. (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
17. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
18. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
19. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
20. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
21. Métraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A. Nano Lett. 2003, 3, 519.
22. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y. Chem. Mater. 1999, 11, 2310.
23. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
24. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
25. Chen, S.; Wang, Z. L. Ballato, J.; Folger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
26. (a) Fleming, D. A.; Williams, M. E. Langmuir 2004, 20, 3021. (b) Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, J. H. T. Chem. Mater. 2003, 15, 4172. (c) Walker, C. H.; St. John, J. V.; Wisian-Neilson, P. J. Am. Chem. Soc. 2001, 123, 3846.
27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
28. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313.
29. Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306.
30. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843.
31. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B 2003, 107, 2719.
32. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
33. Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955.
34. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955.
35. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.
36. Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.
37. (a) Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579. (b) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682.
38. (a) Huang, M. H.; Dunn, B. S.; Zink, J. I. J. Am. Chem. Soc. 2000, 122, 3739. (b) Huang, M. H.; Dunn, B. S.; Soyez, H.; Zink, J. I. Langmuir 1998, 14, 7331.
39. Marks, L. D. Rep. Prog. Phys. 1994, 57, 603.
40. Everett, D. H. Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988; p156.

Chapter 3 SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS BY A SEEDING GROWTH APPROACH

1. (a) Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808. (b) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (c) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
2. (a) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature, 2000, 404, 746. (b) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508. (c) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979.
3. (a) Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808. (b) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655.
4. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.
5. Lin, S. Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330.
6. (a) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414. (b) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. (c) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316. (d) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771. (e) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701.
7. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
8. (a) Kim, J.-U.; Cha, S.-H.; Shin, K.; Jho, J. Y.; Lee, J.-C. Adv. Mater. 2004, 16, 459. (b) Ibano, D.; Yokota, Y.; Tominaga, T. Chem. Lett. 2003, 32, 574.
9. (a) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. (b) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264.
10. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186.
11. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327.
12. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782.
13. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
2. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
3. 一、水相加熱法合成極小三角金奈米片狀結構二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
4. 金奈米粒子及奈米壓印金屬在表面電漿元件上之應用
5. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
6. 具形態控制的氧化亞銅奈米晶體及氧化亞銅包金之核殼異質結構之合成及其物理與化學性質的探討
7. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
8. 金奈米粒子合成與DNA之毛細管電泳分離
9. 在酸性及鹼性下製備高產率且可調控徑長比的金奈米棒和針對超長金奈米棒的改善合成方法
10. 以金奈米立方體製備二十四面體和凹面八面體之鈀包金核殼奈米結構與其高效率的電化學活性
11. 二氧化矽-氮化鎵核殼奈米結構的製備
12. 銀鈀合金奈米粒子之製備及其在無電鍍沉積之應用
13. 一、奈米金結構之合成、官能基化與組裝二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
14. 以光譜解析的方法研究光合成金奈米粒子的成核演化機制與生長模式
15. Poly(fluorene-co-pyridine)/金奈米顆粒之奈米複合材料的合成與性質分析