跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張繼遠
研究生(外文):Chi-yuan Chang
論文名稱:以無電鍍製備鈀膜及其純化氫氣之應用
論文名稱(外文):Preparation of Highly Selective Palladium Membranes for Hydrogen Purification by Electroless Plating
指導教授:趙桂蓉趙桂蓉引用關係
指導教授(外文):Kuei-jung Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:91
中文關鍵詞:鈀膜氫氣純化不�袗�管選擇率
外文關鍵詞:Palladium membranehydrogen purificationstainless steel tubeselectivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究探討多孔性不�袗�(PSS)膜管為基材之金屬鈀複合膜管的製備以及特性鑑定。製備方法大致上可分為二個階段:不�袗�管的修飾和金屬鈀膜的沈積。製備的樣品則以氬氣通透性及氫氮選擇率來鑑定其特性。
修飾的主要目的即為平整化膜管的表面。PSS膜管經表面磨平、清洗,再以氧化鋁粉填充其表面上的孔洞並被覆Ludox二氧化矽後,可由光學顯微鏡觀察得知修飾後的表面已漸漸平整。並由氬氣通透性的實驗發現修飾後的PSS膜管仍具有很高的通透性,有利於氣體在修飾後的PSS膜管中擴散。
金屬鈀膜是以無電鍍的方式沈積在修飾過的PSS膜管上。首先,膜管以具有高度地催化活性的鈀奈米膠體溶液活化。此膠體能使後續鍍上的鈀膜產生向下紮根的結構,故附著力可大為提升。結合滲透作用的無電鍍使金屬鈀膜更趨緻密,其緻密程度可由鈀膜呈氣通透性得知。再者,緻密化之鈀膜選擇率在350 °C 及20 PSI的壓差下,H2對N2的通透選擇率可達到2070,同時氫氣的流量到達195 ml/min (約14 m3/m2.min.atm0.5)
Abstract
The preparation and characterization of dense Pd composite membrane on porous stainless steel (PSS) tube are reported. The preparation comprises two stages: modification of PSS tubular support and deposition of Pd membrane. The characterization includes argon permeability and selectivity of hydrogen to nitrogen.
The purpose of modification was to smooth the surface of PSS tube. The polished and cleaned PSS tubular membrane was modified by filling surface pores with alumina powders and coating with colloidal silica. After the modification, the surface was smooth observed by optical microscopy.
The Pd membrane was deposited on modified PSS tube by electroless plating. Before plating, the tube was activated by Pd nano-particles which has highly catalytic activity and has been found to inhance the adhesion of Pd membrane on modified PSS support. Electroless plating combined with osmosis was adopted to prepare the Pd membrane. The resulting Pd/PSS composite filters possess vert low argon permeability and the H2/N2 selectivity up to 2070 at 350 °C at the pressure difference of 20 PSI with the hydrogen flux of 195 ml/min (ca 14 m3/m2.min.atm0.5).
Contents
博碩士論文授權書 I
指導教授推薦書 II
考試委員審定書 III
Abstract IV
摘要 V
謝誌 VI
Chapter 1. Introduction 1
1.1 Hydrogen Demand 1
1.2 Hydrogen Separation through Palladium Membrane 5
1.3 Preparation of Palladium Membrane 12
1.4 Permeability of a Porous Media 27
1.5 Purpose of This Research 32
Chapter 2. Experimental 33
2.1 Chemicals 33
2.2 Overview of experimental section 35
2.3 Surface Cleaning of PSS Tube 36
2.4 Surface Planarization of PSS Tubes 37
2.5 Colloid Coating 43
2.6 Deposition of Palladium Membranes 45
2.7 Characterization 50
Chapter 3. Results and Discussion 54
3.1 Surface Modification of PSS Tubes 54
3.2 Peeling of Pd membrane 66
3.3 Permeability through Pd membranes 71
3.4 Performance of Pd membranes 79
3.5 Characteristic of Pd Nano-colloids 85
Chapter 4. Conclusion 91


Figure Contents
Figure 1.1 Hydrogen diffusion through palladium film. 6
Figure 1.2 H/Pd phase diagram 10
Figure 1.3 The scheme for the electroless plating combined with osmosis. 20
Figure 1.4 MOCVD 22
Figure 1.5 Magnetron sputtering 23
Figure 1.6 Electroplating 25
Figure 1.7 Composite membrane 30
Figure 2.1 The scheme of preparation of Pd composite membranes 35
Figure 2.2 The schematic diagram of planarization 38
Figure 2.3 The set-up of the dip-coating 42
Figure 2.4 The set-up for Pd colloidal coating. 47
Figure 2.5 The set-up of electroless plating 49
Figure 2.6 The set-up for the measurement of permeability. 51
Figure 2.7 The set-up for the measurement of selectivity. 52
Figure 3.1 The Surface of original PSS tube 55
Figure 3.2 The Surface of polished PSS tube 55
Figure 3.3 The difference between polished surface and original surface 55
Figure 3.4 The Cleaned surface 56
Figure 3.5 The OM picture of PSS surface after the growth of MFI membrane 58
Figure 3.6 The OM picture of PSS surface after coating of colloidal MFI membrane 58
Figure 3.7 The OM picture of PSS surface after coating with colloidal MFI membrane and polish posttreatment 59
Figure 3.8 The OM picture of colloidal silica membrane after calcination 60
Figure 3.9 The argon permeability of Tube A 61
Figure 3.10 The argon permeability of Tube B 61
Figure 3.11 The PSS tube filled with alumina powders 62
Figure 3.12 The argon permeability of modified PSS tubes (the values of estimated pore sizes are listed in the parentheses) 63
Figure 3.13 The PSS surface after calcination 64
Figure 3.14 The argon permeability of modified PSS tubes 65
Figure 3.15 Time period of preparation 65
Figure 3.16 The peeling of Pd membrane 66
Figure 3.17 The peeling area 67
Figure 3.18 The anchoring effect 68
Figure 3.19 The line scan of EPMA 69
Figure 3.20 The argon permeability of modified PSS tubes 73
Figure 3.21 The relation between the permeability of Pd membrane and pore size of substrate 78
Figure 3.22 The selectivity and hydrogen flux of each tube 79
Figure 3.23 Hydrogen flux through Pd composite membrane 82
Figure 3.24 The result of the regression analysis 84
Figure 3.25 The path of x-ray 86
Figure 3.26 The original PXRD spectrum of Pd nanocolloids 86
Figure 3.27 The corrected PXRD spectrum 87
Figure 3.28 The differences of the peak positions at different angle 88
Figure 3.29 The lattice constant 89


Table Captions

Table 1.1 Comparison of different fuel cells 2
Table 1.2 Use of fuel cells1 2
Table 1.3 The thickness of Pd membrane and n value in literature 9
Table 1.4 The composition of the activation bath reported by Li et al 14
Table 1.5 The composition of the activation bath reported by Ma et al 15
Table 1.6 The composition of the activation bath reported by Varma et al 15
Table 1.7 The compositions of the plating bath 17
Table 1.8 The compositions of the plating bath reported by Hughes et al 18
Table 1.9 The compositions of the plating bath reported by Ma et al 18
Table 1.10 The calculation of the effective concentration in the plating bath 20
Table 2.1 The composition of the plating bath. 48
Table 3.1 Procedures of each tube 70
Table 3.2 The Ar permeability of Pd/Modified PSS 71
Table 3.3 The Ar permeability of Pd membranes 75
Table 3.4 Rise in permeability after heat treatment at 350 °C 77
Table 3.5 The selectivity and hydrogen flux at different pressure 80
Table 3.6 The result of calculation 83
Table 3.7 The calculation of PXRD 90
1. Rennie, J.; Scientific American Chinese Version, 2002, No. 10, Dec.
2. Quirk, M.; Serda, J.; “Semiconductor Manufacturing Technology”, 2001, Chapter 2
3. Kushmerick, J.G.; Kandel, S.A.; Han, J.A. J. Phys. Chem. B 2000, 104, 2980-2988
4. Paturzo L.; Basile, A. Ind. Eng. Chem. Res. 2002, 41, 1703-1710
5. She, Y.; Han, J.; Ma, Y. H. Catalysis Today 2001, 67, 43-53.
6. Hollein, V.; Thornton, M.; Quicker, P.; Dittmeyer, R. Catalysis Today 2001, 67, 33-42.
7. Paglieri, S. N.; Foo, K. Y.; Way, J. D.; Collins, J. P.; Harper-Nixon, D. L. Industrial and Engineering Chemistry Research 1999, 38, 1925.
8. Lopez, N.; Norskov, J. K. Surface Science 2001, 477, 59
9. Mardilovich, I.P; Engwall, E.; Ma, Y.H.; Desalination 2002, 144(1-3), 85-89
10. Li, A.; Liang, W.; Hughes, R.; Catalysis Today 2000, 56, 45-51
11. Wu, C.W.; “Study on the preparation of Pd/Ag alloy membrane tube and simulating the structure” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2003, P.54
12. Nam, S.E.; Lee, K.H.; J. Membrane Sci. 2000, 170(1), 91-99
13. Yeh, C.S.; “Hydrogen Separation of Ag Tube Coated with Pd-Ag membrane” Master Thesis of Department of Materials Science and Engineering in National Tsing Hua University, 2002, P.9
14. Stocker, J.; Whysall, M. et al; "30 Years of PSA Technology for Hydrogen Purification" Universal Oil Products 1998 July 2818
15. Heung, L. K.; “Separation Using Encapsulated Metal Hydride” Westinghouse Savannah River Company (USA), 2002, 00558
16. Uemiya, S.; Sato, N.; Anto, H., et al; J. Membrane Sci. 1991, 56 (3), 303-313
17. Uemiya, S.; Matsuda, T.; Kikuchi, E.; J. Membrane Sci. 1991, 56 (3), 315-325
18. Govind, R.; Atnoork, D.; Ind. Eng. Chem. Res. 1991, 30(3), 591-594
19. Shu, J.; Grandjean, B.P.A.; Ghali, E.; et al; J. Membrane Sci. 1993, 77(2-3), 181-195
20. Mardilovich, P.P.; She, Y.; Ma, Y.H., AIChE J. 1998, 44(2), 310-322
21. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; J. Eelectrochem. Soc. 2003,150(3), C125-C130
22. Wang, Y.H.; Wan, C.C.; Plating and Surface Finishing 1982, August, 59-61
23. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; Adv. Funct. Mater. 2001, 11(5), 344-347
24. Mallory, G.O.; Hajdu, J.B. et al; “Electroless Plating: Fundamentals And Applications”, 1990, 421
25. Yeung, K.L.; Sebastien, J.M.; Varma, A.; Catalysis Today 1995, 25, 231-236
26. Chen, B.H.; Hong, L.; Ko, T.M. et al; Ind. Eng. Chem. Res. 2002, 41, 2668-2678
27. Li, Z.Y.; Maeda, K.; Kusakabe, K. et al; J. Membrane Sci. 1993, 78, 247
28. Kainourgiakis, M.E.; Stubos, A.K.; Konstantinou, N.D. et al; J. Membrane Sci. 1996, 114, 215-225
29. Cheng, S.L.; “孔洞性氧化矽管狀膜” Master Thesis of Department of Chemistry in National Tsing Hua University, Taiwan 2002, Chap. 2, P.11-14
30. Kao, C.H.; “MFI沸石薄膜的合成、鑑定與應用” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2000, P.23-34
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 方吉正(1998).教師信念研究之回顧與整合--六種研究取向.教育資料與研究,20,36-44。
2. 王恭志(2000).教師教學信念與教學實務之探析.教育研究資訊,8(2),84-98。
3. 李新鄉(1994).教育專業承諾發展模式之研究.嘉義師院學報,8,94-144。
4. 吳榮鎮(2000).教師溝通語言智慧的運用與啟示.訓育研究,39(2),30-38。
5. 吳秋蓉、魏玉萍、高淑惠、侯絮如、黃士豪、林元淑(1998) .護生在臨床實習面臨之壓力.領導護理,2(2),54-61。
6. 吳政憲(2001).教師在職進修的新趨勢--學校本位的教師專業發展.研習資訊,18(1),29-44。
7. 武自珍(1997).理性情緒行為法在教師情緒管理上的運用.學生輔導雙月刊,51,52-61。
8. 林惠敏(2003).國小教師美術教學態度及其相關因素之研究.國教學報,15,253-287。
9. 林美華(1996).某專科學校臨床護理實習指導教師工作壓力源之研究.弘光醫專學報,28,1-21。
10. 施宜煌(2000).教師"教學語言行為"影響"學生學習"之探討.教師之友,41(5),37-42。
11. 徐大偉(1998).氣憤情緒的探討及其輔導策略.教育資料文摘,42(6),154-176。
12. 唐福瑩(1993).大學臨床護理教師應有的重要行為之研究.榮總護理,10(1),80-88。
13. 唐福瑩(1994).臨床護理教學教師之評值.榮總護理,11(1),29-36。
14. 唐福瑩、吳祥鳳(2001) .臨床教學—教師態度之省思.護理雜誌,48(4),44-49。
15. 孫志麟(2002).教師校能三元模式的建構及應用.教育研究月刊,104,44-54。