跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張耿豪
論文名稱:耐輻射奇異球菌S-layer包覆微脂體之研究
論文名稱(外文):Study on liposome coated with Deinococcus radiodurans S-layer
指導教授:譚世特
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:24
中文關鍵詞:微脂體細菌表面結晶蛋白耐輻射奇異球菌
外文關鍵詞:liposomeS-layerDeinococcus radiodurans
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前本實驗室針對Deinococcus radiodurans IR表面two-dimensional crystalline surface layers結構及自組合特性作深入的研究,並開發出簡單可大量快速獲得S-layer fraction (SLF) 的方法。本實驗基於改善微脂體穩定性不足方面的缺點,利用SLF與lipid membrane的interaction,可以簡單且快速在微脂體表面貼覆細菌的表層結晶蛋白,形成SLF coated liposome (SLL)。利用螢光顯微鏡發現SLL具有獨特的發光特性,因此可藉由共軛焦雷射掃描式顯微鏡觀察SLF coated liposome的完整性,以及使用原子力電子顯微鏡觀察奈米級SLL的形態。穩定性實驗方面,SLL與微脂體分別經過酸 (pH 1.5 solution) 處理一段時間,利用庫爾特粒徑分析儀(COULTER Multisizer Ⅱ) 來測量其體積與顆粒數變化,結果顯示SLL具有較佳的耐酸性。另外微脂體面對高張和低張溶液,其體積及顆粒數變化相當大。反觀經過SLF修飾的微脂體具有較佳的穩定性。SLL表面的結晶蛋白構造提供了完整的基質可以連接其他功能性分子,提升藥物輸送的專一性。SLL表面的特殊發光特性亦可當作生物感應器或是診斷用的定量標記(quantitative markers),增添了微脂粒的應用價值。此外SLL的構造也類似簡單的細菌型態,建立了一個研究細菌membrane protein、ion channel 及演化學方面的model system 。
In the previous study, we have established conditions for isolated subunits of the crystalline cell surface layer (S-layer) protein of Deinococcus radiodurans IR and
efficiently in vitro self-assembly of purified protein. More recently we develop a new method for high-yield preparation of S-layer fraction (SLF). In this work, we are interested in improving liposomes instability. Using the self-assembly principle to attach SLF easily onto liposome surface to form a novel type of liposome (SLL). In basic structural principle SLF coated liposome resemble the cell envelopes. We also observe SLL under confocal laser scanning microscopy and atomic force microscopy. Furthermore, we have investigated the stabilizing effect of SLL towards acid or osmotic challenges. We have demonstrated the SLL are more stable than plain liposome. Such SLL system are close to biomimetic structures that resemble archaeal cells or virus envelopes, may be a model system to study membrane protein, ion channel, and evolution process of bacteria. The high stability of SLL and possibility for immobilizing biologically active molecules on the crystalline array may offer potential in various different liposome applications.
1. Thornley, M. J., Horne, R.W. & Glauert, A. M. 1965. The fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 51: 267-289.
2. Sleytr, U.B., Kocur, M., Glauert, A. M. & Thornley M.J. 1973. A study by freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87.
3. Baumeister, W. & Barth, M., Hegerl, R. 1986. Three-dimensional structure of the regular surface layer (HPI Layer) of Deinococcus radiodurans. J. Mol. Biol. 187: 241-253.
4. Pum, D., Neubauer, A., Gyoervary, E. & Sara, M. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11:100-107.
5. Baumeister, W. & Kubler, O. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. 75:5525-5528.
6. Baumeister, W., Karrenberg, F. & Rachel, R. 1982. The major cell envelope protein of Micrococcus radiodurans (R1) structure and chemical characterization. Eur. J. Biochem. 125: 535-544.
7. Dietmar, P. & Sleytr, U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17:8-12.
8. Sleytr, U.B., Györvary E. & Pum, D. 2003. Crystallization of S-layer protein lattices on surfaces and interfaces. Prog. Organ. Coat. 47:279-287.
9. Lancy, P. & Murray, R.G. 1977.The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the wall layes. Can J Microbiol. 24:162-176.
10. Elizabeth, W. & Hilary G. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.
11. Thompson, B. G. & Murray, R. G. 1981. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol. 27:729-734.
12. Thompson, B. G. & Murray, R. G. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can J Microbiol. 28:1081-1088.
13. Huang, Y. & Anderson, R. 2002. Enhanced immune protection by a liposome-encapsulated recombinant respiratory syncytial virus (RSV) vaccine using immunogenic lipids from Deinococcus radiodurans. Vaccine. 20:1586-1592.
14. Barenholz, Y. 2001. Liposome application: problems and prospects. Curr. Opin. Colloid Interfacial Sci. 6:66-77.
15. Vemuri, S. & Rhodes, C. T. 1995. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70:95-111.
16. Allen, T. M. & Cullis, P. R. 2004. Drug delivery systems: entering the mainstream. Science. 303:1818-1822.
17. Chen, H., Torchilin, V. & Langer, R. 1996. Polymerized liposomes as potential oral vaccine carriers: stability and bioavailability. J. Control. Release. 42:263-272.
18. Graff, A., Winterhalter, M. & Meier, W. 2001. Nanoreactors from polymer-stabilized liposomes. Langmuir. 17: 919-923
19. Kupcu, S., Sara, M. & Sleytr, U. B. 1995.Liposomes coated with crystalline bacterial cells surface protein (S-layer) as immobilization structures for macromolecules. Biochim Biophys Acta. 1235:263-269.
20. Mader, C., Kupcu, S., Sleytr, U.B. & Sara, M. 2000. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim Biophys Acta. 1463:142-150.
21. Mader, C., Kupcu, S., Sara, M. & Sleytr, U.B. 1999. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim Biophys Acta. 1418:106-116.
22. Moll, D., Huber, C., Schlegel, B., Pum, D., Sleytr, U.B. & Sara, M. 2002. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci U S A. 99:14646-14651.
23. Nacka, F., Cansell, M. & Gouygou, J. P. 2001. Physical and chemical stability of marine lipid-based liposome under acid conditions. Coll. Surf. B: Biointerf. 20:257-266.
24. Venkatesan, N. & Vyas, S. P. 2000. Polysaccharide coated liposomes for oral immunization development and characterization. Int. J. Pharmaceutics. 203:169-177.
25. Romanowski, S. A., Chiaramoni, N. S & Lioy, V. S. 2003. Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids. 122:191-203.
26. Schuster, B. P., Gufler, C., Pum, D. & Sleytr, U. B. 2004. S-Layer Proteins as Supporting Scaffoldings for Functional Lipid Membranes. IEEE Trans. Nanobio. 3:16-21.
27. Sprott, G. D., Dicaire, C. J., Gurnani, K. & Deschatelets, L. A. 2004. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine. 22:2154-2162.
28. Thomson, N. H., Collin, I. & Martyn, C. D. 2000. Atomic force microscopy of cationic liposomes. Langmuir. 16: 4813-4818.
29. Ishihara, K., Tsujino, R. & Hamada, M. 2002. Stabilized liposomes with phospholipid polymers and their interactions with blood cells. Coll. Surf. B: Biointerf. 25:325-333.
30. Moussaoui, N., Cansell, M. & Denizot, A. 2002.Marinosomes®, marine lipid-based liposomes: physical characterization and potential application in cosmetics. Int. J. Pharmaceutics. 242: 361-365.
31. Hui, S.W., Kuhl, T.L. & Guo, Y. Q. & Israelachvili, J. 1999.Use of poly(ethylene glycol) to control cell aggregation and fusion. Coll. Surf. B: Biointerf. 14:213-222.
32. Manuel, A., Coelho, N., Alessandra, G. & Helmuth Mohwald. 2004. Nanocapsules with functionalized surfaces and walls. IEEE Trans. Nanobio. 3:3-5.
33. Manuela, V. & Maya, S. 2002. Designing of ‘intelligent’ liposomes. J. Cell. Mol. Med. 6:465-474.
34. Nicola, I., Seta, K., Gerald, M. & Sigrid, K. 2004. A functional cheimaeric S-layer-enchanced green fluorescenct protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells. Biochem. J. 379: 441-448.
35. Ji, E. K., Ahn, D. J. & Kim, J. M. 2003.The fluorescent polydiacetylene liposome. Bull. Korean Chem. Soc. 24:667-670.
36. Sleytr, U.B. & Messner, P., Pum, D. 1999. Crystalline bacterial cell surface layers(S Layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 38:1034-1054.
37. Ruysschaert, T. & Germain, M. 2004. Liposome-based nanocapsules. IEEE Trans. Nanobio. 3:49-55.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top