跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊憲
論文名稱:新穎S-layer為基礎的中空球體之研究
論文名稱(外文):Study on Novel S-layer-based Hollow Spheres
指導教授:譚世特
指導教授(外文):S. T. Tan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:20
中文關鍵詞:表層結晶蛋白
外文關鍵詞:S-layersphere
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌表層蛋白(S-layers)為許多細菌及古生菌細胞最外層的組成結構。Deinococcus radiodurans具有複雜的細胞壁組成結構,其中包含S-layers。傳統上,製備方面通常都是利用化學藥劑處理方式將D. radiodurans的S-layers分離,效率不彰;應用性方面,S-layers通常以二維平面層次來利用。本篇論文想開發一種新的製程取得S-layers,並且探討S-layers在三維層次變化上的發展性。而我們成功的提供一種新穎簡單且自然的方法從D. radiodurans分離S-layers,我們稱為S-layers fraction (SLF)。更進一步,首先我們利用一種物理性力量使SLF形成許多中空顆粒 (SLFP),直徑約100 – 200 nm。另外,我們在中性環境下將Ag+加至SLF溶液中。我們意外的發現一種中空球體結構,稱SLF-Ag,直徑約1 – 30 mm。這些結果顯示新的製程方式可有效的從D. radiodurans分離S-layers,此SLF能形成三維中空球體結構而具有利用性、可塑性、並且保有其原本在細胞上所扮演的生理角色。此外,SLF-Ag可能含有biogenic minerals,polarity,和evolution等意涵。
Bacterial cell surface layer proteins (S-layers) were the outermost cell envelope component of many bacteria and archaea. Deinococcus radiodurans, had a complex cell wall profile that including S-layers. Traditionally, in preparations, S-layers of D. radiodurans were usually isolated by chemical reagents treatment; in applications, S-layers were usually used in two-dimension form. We wanted to build up a method to efficiently isolate S-layers from D. radiodurans and research the development of S-layers in three-dimension form. We found that we succeeded in building up an easy and novel method to isolate the S-layers fraction (SLF). Furthermore, we firstly used physical force to make SLF to form particles (SLFP), diameter ~100 – 200 nm. Secondary, when Ag+ was added to SLF buffer solution at neutral condition, we unexpectedly found there were hollow spheres called SLF-Ag, the diameter ~1 – 30 mm. These results indicated that the novel method could efficiently isolate S-layers from D. radiodurans. SLF could form three-dimension hollow spheres and then they were useful, plasticity, and still owning inherent properties. Moreover, the meaning of the SLF-Ag may be about the implication of biogenic minerals, polarity, and evolution.
1. Sleytr, U. B., and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37: 311-339.
2. Thornley, M. J., A. M. Glauert, and U. B. Sleytr. 1974. Structure and assembly of bacteria surface layers composed of regular arrays of subunits. Phil. Trans. R. Soc. Lond. B. 268: 147-153.
3. Glauert, A. M., and M. J. Thornley. 1969. The topography of the bacterial cell wall. A. Rev. Microbiol. 23: 159-198.
4. Holt, S. C., and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bact. Rev. 33: 346-378.
5. Mesnage, S., E. Tosi-couture, P. Gounon, M. Mock, and A. Fouet. 1998. The capsule and S-layer: Two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 1488-1495.
6. Müller, D. J., W. Maumeister, and A. Engel. 1996. Comformation change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030.
7. Sleytr, U. B., S. Margit, P. Dietmar, and S. Bernhard. 2001. Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science. 68: 231-278.
8. Pum, D., A. Neubauer, E. Gyoervary, M. Sára, U. B. Sleytr. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11: 100-107.
9. Glauert, A. M., and M. J. Thornley. 1973. Self-assembly of a surface component of a bacterial outer membrane. John Innes Symp. 1: 297-305.
10. Sleytr, U. B. 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55: 360-377.
11. Reinhoudt, D. N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science. 295: 2403-2407.
12. Chu, S., S. Cavaignac, J. Feutrier, B. M. Phipps, M. Kostrzynska, W. W. Kay, and T. J. Trust. 1991. Structure of the tetragonal suface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 266: 15258-15265.
13. Sára, M., and U. B. Sleytr. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092-4098.
14. Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl. 1999. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA. Arch. Microbiol. 171: 159-165.
15. Engelhardt, H., and J. Peters. 1998. Structure research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interaction. J. Struct. Biol. 124: 276-302.
16. Dietmar, P., and U. B. Sleytr. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17: 8-12.
17. Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.
18. Sleytr, U. B., M. Kocur, A. M. Gluert, and M. J. Thornley. 1973. A study of freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87.
19. Lancy, JR., P., and R. G. E. Murray. 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the cell wall layers. Can. J. Microbiol. 24: 162-176.
20. Baumeister, W., and O. Kübler. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. USA 75: 5525-5528.
21. Thompson, B. G., and R. G. E. Murray. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can. J. Microbiol. 28: 1081-1088.
22. Karrasch, S., R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. USA 91: 836-838.
23. W. Baumeister, F. Karrenberg, R. Rachel, A. Engel, B. T. Heggeler, and W. O. Saxton. 1982. The major cell envelope protein of Micrococcus radiodurans (R1) structural and chemical characterization. J. Biochem. 125: 535-544.
24. B. G. Thompson, and R. G. E. Murray. 1981. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can. J. Microbiol. 27: 729-734.
25. F. I. Chou, and S. T. Tan. 1991. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173: 3184-3190.
26. 潘龍德,譚世特;銀奈米顆粒/S層複合材料之研究;國立清華大學生物科技所碩士論文;2004。
27. U. B. Sleytr, E. Györvary, and D. Pum. 2003. Crystallization of S-layer protein lattices on surface and interfaces. Progress in Organic Coatings. 47: 279-287.
28. A. S. Blawas, and W. M. Reichert. 1998. Protein pattening. Biomaterials. 19: 595-609.
29. S. Dieluweit, D. Pum, and U. B. Sleytr. 1997. Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramolecular Science. 5: 15-19.
30. M. Sára, and U. B. Sleytr. 1996. Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). Micron. 27: 141-156.
31. Y. Wang, Z. Tang, M. A. Correa-Duarte, L. M. Liz-Marzán, and Nicholas, A. K. 2003. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. J. Am. Chem. Soc. 125: 2830-2831.
32. W. Wang, and Sanford, A. A. 2001. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications. J. Am. Chem. Soc. 123: 12528-12535.
33. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg. 2003. Surface plasmon micro- and nano-optics. Journal of Microscopy. 209:167-172.
34. 張耿豪,譚世特;耐輻射奇異球菌S-layer包覆微脂體之研究;國立清華大學生物科技所碩士論文;2004。
35. S. Rasmussen, L. Chen, D. Deamer, D. C. Krakauer, N. H. Packard, P. F. Stadler, and M. A. Bedau. 2004. Transitions from nonliving to living matter. Science. 303:963-965.
36. E. Work. 1964. Amino acids of walls of Micrococcus radiodurans. Nature. 201:1107-1109.
37. L. Jean-Marie. 2002. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 99:4763-4768.
38. J. Whitfield. 2004. Born in a watery commune. Nature. 427:674-676.
39. E. A. Gaucher, J. M. Thomson, M. F. Burgan, and S. A. Benner. 2003. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature. 425:285-288.
40. M. M. Hanczyz, S. M. Fujikawa, and J. W. Szostak. 2003. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science. 302:618-622.
41. D. Fortin. 2004. What biogenic minerals tell us. Science. 303:1618-1619.
42. L. Shapiro, H. H. McAdams, and R. Losick. 2002. Generating and exploiting polarity in bacteria. Science. 298:1942-1946.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top