跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李皓剛
研究生(外文):Haokang Li
論文名稱:耐輻射奇異球菌與金屬奈米尺寸材料
論文名稱(外文):Deinococcus radiodurans and Metallic Nanomaterials
指導教授:譚世特
指導教授(外文):S. T. Tan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:28
中文關鍵詞:耐輻射奇異球菌靜止期固定化銀奈米材料菌液
外文關鍵詞:Deinococcus radioduransstationary phaseimmobilizationsilver nanomaterialsbacteria culture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要在報告利用耐輻射奇異球菌Deinococcus radiodurans IR產生金屬銀奈米材料並推測可能的生成機制。在整個實驗過程中,我們發現在靜止期的D. radiodurans IR菌液加入硝酸銀反應數小時後可以在光學顯微鏡下觀察到有黑色線狀物質及黑色顆粒產生附著在細胞聚集成的團塊上,該線狀物質經過X光能譜儀(Energy dispersive X-ray spectrometer, EDS)分析確認成份為元素銀,且這些線狀物質在紫外光/可見光光譜中約350 nm附近具有特性吸收。這些銀奈米線的平均寬度約60到100 nm,最長長度可以超過100 �慆。在實驗過程中我們也嘗試了一些還原電位頗高的金屬離子,如金(III)和銅(II)試圖了解細胞聚集現象與金屬離子還原電位的關係及相同的反應條件是否適用於其他金屬離子。若將細菌固定在晶圓表面後,利用類似的反應條件可使部分細胞之間被銀線連結甚至形成網絡。這些在細胞之間的奈米銀線(silver nanowires)生長可以受到兩側的細胞影響而產生彎曲,透過這樣的方式可以間接了解在菌液中細胞團塊上銀線可能的生長方式,以及知道D. radiodurans IR在懸浮反應系統中奈米銀線如何從細菌細胞上起頭。
In this thesis, we report a novel method using Deinococcus radiodurans IR culture to fabricate silver nanostructures, including nanoparticles and nanowires, and discuss the hypothetical mechanism of their formation. After series of experiments, we found that these black wires and particles only exist in stationary phase cultures. These black wires are metallic silver after being analyzed by energy dispersive X-ray spectrometer, and the size of them is from 60 to 100 nm in width. Furthermore, as we immobilize cells on wafer surface, silver nanowires also exist and connect at least one cell. Even more, there are silver nanowire network connecting several cells, too. Straight and curved silver nanowires are observed and the curvature is formed through influence of certain effecter cells beside the wire. We also tested some heavy metal ions, such as gold (III) and copper (II), to know what the relationship between cell aggregates formation and reduction potential is and to see if same condition can be applied to other metal ions. In conclusion, we believe that D. radiodurans IR culture could be a very efficient system to fabricate silver nanostructures and silver nanowire networks.
1. Brust, M. & Kiely, C. J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces A 202, 175-186 (2002).
2. Liely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444-446 (1998).
3. Korgel, B. A., Fullam, S., Connolly, S. & Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: ordered “soft spheres”. J. Phys. Chem. B 102, 8379-8388 (1998).
4. Wang, Y. et al. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticles films. J. Am. Chem. Soc. 125, 2830-2831 (2003).
5. Ras, R. H. A. et al. Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay mineral nanoparticles. Langmuir 19, 4295-5302 (2003).
6. Sun, Y. et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736-4745 (2003).
7. Caswell, K. K., Bender, C. M. & Murphy, C. J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3, 667-669 (2003).
8. Sauer, G.., Brehm, G. & Schneider, S. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243-3247 (2002).
9. Sun, Y., Mayers, B. & Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through thermal process. Nano Lett. 3, 675-679 (2003).
10. Choi, J. et al. Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology. J. Mater. Chem. 13, 1-4 (2003).
11. Hsia, C.-H. et al. In situ generation of the silica shell layer-key factor to the simple high yield synthesis of silver nanowires. J. Am. Chem. Soc. 125, 9940-9941 (2003).
12. Wang, C., Chen, M., Zhu, G. & Lin, Z. A novel soft-template technique to synthesize metal Ag nanowire. J. Colloid Interface Sci. 243, 362-364 (2001).
13. García, N., Przeslawski, J. & Sharonov, M. Giant conductance response to light pulses in metallic nanowires. Surface Science 407, L665-L669 (1998).
14. Costa-Krämer, J. L. & García, N. Conductance quantization histograms of gold nanowires at 4 K. Phys. Rev. B Condens. Matter 55, 12910-12913 (1997).
15. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625-627 (2003).
16. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775-778 (1998).
17. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Soc. USA 100, 4527-4532 (2003).
18. Mertig, M., Kirsch, R., Pompe, W. & Engelhardt, H. Fabrication of highly oriented nanocluster arrays by biomolecular templating. Eur. Phys. J. D 9, 45-48 (1999).
19. Mertig, M. et al. Formation and manipulation of regular metallic nanoparticles arrays on bacterial surface layers: an advanced TEM study. Eur. Phys. J. D 16, 317-320 (2001).
20. Klause, T., Joerger, R., Olsson, E. & Granqvist, C. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Soc. USA 96, 13611-13614 (1999).
21. Fredrickson, J. K. et al. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Micobiol. 66, 2006-2011 (2000).
22. Chou, F. I. & Tan, S. T. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173, 3184-3190 (1991).
23. Chou, F. I. & Tan, S. T. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172, 3184-3190 (1990).
24. Peyser, L. A., Vinson, A. E., Bartko, A. P. & Dickson, R. M. Photoactivated fluorescence from individual silver nanoclusters. Science 291, 103-106 (2001).
25. Mock, J. J. et al. Composite plasmon resonant nanowires. Nano Lett. 2, 465-469 (2002).
26. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095-6098 (2000).
27. Tao, A. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229-1233 (2003).
28. Kovtyukhova, N. I. et al. Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762-8769 (2001).
29. Pang, Y. T., Meng, G. W., Fang, Q. & Zhang, L. D. Silver nanowire array infrared polarizers. Nanotechnology 14, 20-24 (2003).
30. Liu, S., Yue, J., Cai, T. & Anderson, K. Silver nanowires as templates for preparation of amorphous carbon nanotubes. J. Colloid. Interface Sci. 225, 254-256 (2000).
31. Dunny, G. M. Cell-cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51, 527-564 (1997).
32. Parsek, M. R. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Soc. USA 97, 8789-8793 (2000).
33. Hardman, A. M., Stewart, G. S. A. B. & Williams, P. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie Van Leeuwenhoek 74, 199-210 (1998).
34. Link, S., Mohamed, M. B. & El-Sayed, M. A. Simulation of the absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073-3077 (1999).
35. Ah, C. S., Hong, S. D. & Jang, D.-J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J. Phys. Chem. B 105, 7871-7873 (2001).
36. Zhang, D.-B., Qi, L.-M., Ma, J.-M. & Cheng, H.-M. Formation of silver nanowires in aqueous solution s of double-hydrophilic block copolymer. Chem. Mater. 13, 2753-2755 (2001).
37. Kreibig, U. & Genzel, L. Surf. Sci. 156, 678- (1985).
38. Granqvist, C. G. & Buhrman, R. A. J. Appl. Phys. 47, 2200- (1976).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top