( 您好!臺灣時間:2021/07/27 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yng-Shen Lin
論文名稱(外文):The Expression of Phalaenopsis aphrodite subsp. formosana Genes Selected from Subtraction with Low Temperature
指導教授(外文):Tsai-Yun Lin
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
植物的生長和發育與外界的環境變化有極大的密切關係,像是乾旱、鹽害和低溫逆境。而低溫逆境影響蝴蝶蘭生長,降低產值,因此我們希望利用台灣原生種蝴蝶蘭Phalaenopsis aphrodite subsp. formosana對寒冷的高耐受度,分析低溫誘發基因的可能功能。從實驗室以PCR-select subtraction的方法構築之EST基因庫,選殖分析132個可能受低溫逆境誘發的基因片段。其預測蛋白質功能可分類為抗病蟲害/防禦、能量調節、代謝調節、蛋白質運送及儲存、蛋白質修飾、蛋白質合成、訊息傳遞、蛋白質結構、轉錄調控、運送等。以DNA墨點法篩選低溫誘導和低溫抑制的基因,選11個EST進行北方印跡法來分析這些基因的表現,探討其生理意義。我們認為WRKY、DAD1和MYB可能和低溫逆境有密切關係,分析這些基因間的作用或許可提供我們了解低溫逆境訊息傳遞路徑下的重要訊息。
Plant productivity is greatly affected by environmental stresses such as drought, salt loading, and freezing. We attempted to study the cold-induced genes and their possible function using Phalaenopsis aphrodite subsp. formosana which is relatively tolerant to cold stress. One hundred thirty-two ESTs were selected from a previously constructed library based on PCR-select subtraction with low temperature and analyzed. Sequence analyses for the predicted functions of deduced proteins suggested that they can be grouped into categories of disease/defense, energy, metabolism, protein destination, storage, protein modification, protein synthesis, signal transduction, structural protein and transcriptional control. DNA dot blots were used to reexamine the up-regulated and down-regulated ESTs selected from cold stress. Ten genes with significantly differential expression were selected for Northern bolt analysis. Three cold responsive genes were characterized, including the WRKY、MYB transcription factors and defender against cell death 1 (DAD1). The study of these genes might be important for understanding the interactions underlying cold stress signaling pathway










Alonso, A., C. S. Queiroz and A. C. Magalhaes. 1997. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochim. Biophys. Acta 1323: 75-84.

Anderson, J. V. and C. L. Guy. 1995. Spinach leaf 70-kilodalton heat-shock cognate stabilizes bovine adrenal glucose-6-phosphate dehydrogenase in vitro without apparent stable binding. Planta 196: 303-310.

Apte, S. S., M. G. Mattei, M. F Seldin, and B. R. Olsen. 1995. The highly conserved defender against the death (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett. 363: 304-306.

Bolger, T.P., D.R. Upchurch and B.L. McMichael. 1992. Temperature effects on cotton root hydraulic conductance. Env. And Exp. Bot. 32:49-54.

Chang. H. G., H. G. Nam and S. P. YU. 2003. Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J. 36:240-255.

Chen, W. H. and Y. T. Wang. 1996. Phalaenopsis orchid culture. Taiwan Sugar Res. Instit. 43: 11-16.

Chen, W.H., N. J. Provart, J. Glazebrook, F. Katagiri, H. S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou and S. A. Whitham. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574.

Dong, Yu, Sung, Fatma Kaplan, L. Kil-Jae and L. Guy Charles. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187.

Droge-Laser, W. Kaiser, A. Lindsay, W. P. Halkier, B. A., Loake, G.J. Doerner, P. Dixon, R. A. and C. Lamb. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J. 16: 726-738.

Fowler, S., and M. F. Thomashow. 2002. Arabidopsis transcriptome
profiling indicates that multiple regulatory pathways are activated
during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. 58: 62-97.

Frydman, J, E. Nimmesgern, K. Ohtsuka and U. Hartl. 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111-117.

Gallois, P., T. Makishima, V. Hechtt, B. Despres, M. Laudie, T. ishimoto, and R. Cooke. 1997. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J. 11: 1325-1331.
Guy, M. G. 1989. Phospholipid, sterol composition and ethylene
production in relation to choline-induced chill-tolerance in mung bean (Vigan radiata L. Wilcz) during a chilling-warm cycle. J. Exp. Bot. 40: 369-374.

Hiroshi, A., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic aid signaling. Plant Cell 15: 63-78.

Holmberg, N., J. Farres, J.E. Bailey, P.T. Kallio. 2001. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene. 275:115-24.

Kim, T. E., S. K. Kim, T. J. Han, J. S. Lee and S. C. Chang. 2002. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol. Plant 115: 370-376.

Kitaya Y, T. Okayama, K. Murakami, T. Takeuchi. 2003. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems. Adv. Space Res. 7:1743-1749.

Knight, H. and M. R. Knight. 2001. Abiotic stress signaling pathway: specific and cross-talk. Trends Plant Sci. 6:262-267.

Kranz, H. D., M. Denekamp, R. Greco, R. Jin, A. Leyva, R. C. Meissner, K. Petroni, A. Urzainqui, M. Bevan, C. Martin, S. Smeekens, C. Tonelli, J. Paz-Ares and B. Weisshaar. 1998. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 16: 263-276.

Kreps J. A.,Y. Wu, H. S. Chang , T. Zhu, X. Wang, J. F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129–2141

Maleck, K., A. Levine, T. Eulgem, A. Morgan, J. Schmid, Lawton, K. A. Dangl and R. A. Dietrich. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403-410.

Martin, C. and Paz-Ares. 1997. MYB transcription factors in plants. Trends Genet. 13:67-73.

Nakashima, T., T. Sekiguchi, A. Kuraoka, K. Fukushima, Y. Shibata, S. Komiyama and T. Nishimoto. 1993. Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol. Cell Biol. 13: 6367-6374.

Perez-Tello, G. O., B. A. Silva-Espinoza, I. Vargas-Arispuro, B. O. Briceno Torres and M. A. Martinez-Tellez. 2001. Effect of temperature on enzymatic and physiological factors related to chilling injury in carambola fruit (Averrhoa carambola L.). Biochem. Biophys. Res. Commun. 287: 846-851.

Purvis, A. C. and R. L. Shewfelt. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plants tissues? Physiol. Plant 88: 712-718.

Raison, J. K. and E. A. Chapman. 1976. Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Aust. J. Plant Physiol. 3: 291-299.

Robatzek, S. and I. E. Somssich. 2001. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defense-related processes. Plant J. 28: 123-133.

Robatzek, S. and I. E. Somssich. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16: 1139-1149.

Rushton, P. J. and I. E. Somssich. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315.

Sanchez-Ballesta, M. T., Y. Lluch, M. J.Gosalbes, L. Zacarias, A. Granell, and M. T. Lafuente. 2003. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65-70.

Sanjay A, J. Fu, G. Kreibich. 1998. DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J. Biol. Chem. 273:26094-16099.

Shen, Y. G., W. k. Zhang, S. J. He, J. S. Zhang, Q. Liu and S. Y. Chen. 2003. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet. 106: 923-930.

Sharom, M., C. Willemot and J. E. Thompson. 1994. Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiol. 105: 305-308.

Sik L.K., C. E. Hwa, J. H. Hung, H. D. Sohn, J. B. Rae. 2003. cDNA cloning of a defender against apoptotic cell death 1 (DAD1) homologue, responsive to external temperature stimulus from the spider, Araneus ventricosus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135:117-123.

Silberstein, S., P. G. Collins, D. J. Kelleher, and R. Gilmore. 1995. The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J. Cell Biol. 131: 371-383.

Steponkus, P. L., M. Uemura, R. A. Joseph, S. J. Gilmour, M. F. Thomashow. 1998. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A. 95:14570-14575.

Sugimoto, A., R. R. Hozak, T. Nakashima, Nishimoto and J. H. Rothman. 1995. DAD1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates. EMBO J. 14:4434-4441.

Sung D. Y., K. Fatma, L. Kil-Jee and G. L. Charles. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8:179-187.

Takahashi, R., N. Joshee, Y. Kitagawa. 1994. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol. Biol. 26: 339-52.

Tanaka, Y., T. Makishima, M. Sasabe, Ichinose, Y. Shiraishi, T. Nishimoto, and A. O. Taylor, and A. S. Craig. 1971. Plants under climatic stress. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol. 47: 719-725.

Thomashow, M. F. 1999. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.

Uemura, M. and S. Yashida. 1984. Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. puma). Plant Physiol. 75: 818-826.

Urao, T., K. Yamaguchi-Shinozaki, S. Urao and K. Shinozaki. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529-1539.

Xiong, L. and Y. Yang. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745-759.

Wu, G, A. J. Robertson, X. Liu, P. Zheng, R. W. Wilen, N. T. Nesbitt and L. V. Gusta. 2004. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J. Plant Physiol. 161: 449-458.

Yamada, T. 1997. DAD-1, A putative programmed cell death suppressor gene in rice. Plant Cell Physiol. 38: 379-383.
Yamaguchi-Shinozaki K. and K. Shinozaki. 1993. The plant hormone abscisic acuid mediate the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet. 138:17-25

Yubero-Serrano, E. Moyano, N. Medina-Escobar, J. Munoz-Blanco and J.L. Caballero. 2003. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J. Exp. Bot. 54: 1865-1877.

Zhang, Z.L., Z. Xie, X. Zou, J. Casaretto, T. D. Ho and Q. J. Shen. 2004. A Rice WRKY Gene Encodes a Transcriptional Repressor of the Gibberellin Signaling Pathway in Aleurone Cells. Plant Physiol. 134: 1500-1513.
第一頁 上一頁 下一頁 最後一頁 top