跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭玉珮
研究生(外文):Yu-Pei Cheng
論文名稱:脂筏在非洲眼鏡蛇心臟毒蛋白作用於人類嗜中性白血球之角色
論文名稱(外文):The Role of Lipid Raft on Toxin γ Action at Human Neutrophil
指導教授:吳文桂
指導教授(外文):Wen-Guey Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:脂筏中東非眼鏡蛇嗜中性白血球
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室過去的研究發現,嗜中性白血球對於中東非眼鏡蛇之心臟毒素Toxin γ (Tγ)具有很強的耐受性,但是在短時間內受到Tγ的刺激下,嗜中性白血球的肌動蛋白會聚集成聚合體,造成嗜中性白血球的形變;前述Tγ對嗜中性白血球所造成之影響,並非一種趨化性作用 (從趨化盤的實驗證明Tγ不會引起嗜中性白血球形變而穿透分隔膜),顯然地,Tγ是以不同於fMLP(化學趨化物)之路徑,來引發細胞的肌動蛋白產生聚集化。為探討Tγ在嗜中性白血球膜上的作用機制,我們用介面活性劑(detergent)將細胞膜加以切割後,以蔗糖梯度(sucrose gradient)加以區分為九個部分(DRM extraction),並用免疫染色法鑑定每個部分的特定蛋白含量,再以薄膜層析碘染法鑑定每個部分的脂質成分;結果發現Tγ在細胞膜上所分佈的位置和磷化脂質(sulfatide)的位置相似,位於脂筏區域(raft),且分布在蔗糖梯度分離部分的前端,而受到刺激的嗜中性白血球之肌動蛋白分布和控制組(僅以緩衝液處理)及對照組(100nM fMLP)明顯不同,因此我們可以推論Tγ會作用在嗜中性白血球之脂筏區域,和磷化硫脂分佈在同一區域,並因此造成細胞肌動蛋白分佈的變動,由於在免疫染色法上同時觀測到:受到Tγ刺激的的嗜中性白血球會有Rac/Cdc42 family的蛋白表現,因此進一步推論造成肌動蛋白聚集化之過程可能是透過Rac/Cdc42之訊號傳遞,所造成細胞骨架之變動。至於Tγ和脂筏的結合,我們則是藉由免疫覆蓋技術(immunooverlay)發現Tγ和磷化硫脂在體外(in vitro)會有鍵結之現象,且經由免疫遮蔽效應證實:若將細胞表面上的磷化硫脂以其專一抗體鍵結以遮蔽其效應,則由Tγ所引起的細胞毒殺率將隨所加之磷化硫脂抗體濃度增加而遞減。這可以解釋為何Tγ分佈的位置恰與磷化硫脂相似及其生理作用。總結而言,Tγ可能是藉由和磷化硫脂的鍵結和牽引,而坐落到嗜中性白血球的脂筏端上作用,進行毒殺細胞之後續動作,而在坐落到脂筏區之前後的時間點(兩者皆有可能),引發Rac/Cdc42之訊號傳遞,造成胞內肌動蛋白之單體聚集(actin polymerization)造成嗜中性白血球之形變。
一、序論
1.蛇毒---------------------------------------------------7
2.心臟毒素 ----------------------------------------------9
2.1.心臟毒素簡介-----------------------------------------9
2.2.Tγ簡介-----------------------------------------------11
3.嗜中性白血球簡介---------------------------------------12
3.1.嗜中性白血球-----------------------------------------16
3.2.化學趨化作用-----------------------------------------16
3.3.肌動蛋白---------------------------------------------19
4.脂質(lipid)介紹----------------------------------------22
4.1.細胞膜上之脂質分佈---------------------------------- 22
4.1.1.脂質脂筏之定義與脂筏端(raft domain)介紹----------23
4.1.2.磷化硫脂(sulfatide)介紹--------------------------25
4.2.脂質端(lipid domain)之簡介-------------------------27
4.3.脂質脂筏(lipid raft)之簡介-------------------------28
4.3.1.脂質脂筏之定義與脂筏端(raft domain)介紹----------28
4.3.2.磷化硫脂(sulfatide)介紹--------------------------32
4.3.3.Rac、Rho在脂筏上傳遞訊號造成肌動蛋白之變動---------34



二、實驗材料及方法---------------------------------------37
1.材料---------------------------------------------------37
2.方法---------------------------------------------------38
2.1.蛇毒的製備-------------------------------------------38
2.2.嗜中性白血球之分離---------------------------------- 38
2.3.細胞毒性測定-----------------------------------------40
2.4.Detergent-resistant membrane domain萃取--------------41
2.5.SDS-PAGE及西方點墨法鑑定-----------------------------42
2.5.1.聚丙烯醯胺膠體(SDS-PAGE--------------------------- 42
2.5.2.西方點墨法(Western Blotting)---------------------- 44
2.6.用薄膜層析法鑑定脂質成分---------------------------- 45
2.6.1.展開式薄墨層析法---------------------------------- 45
2.6.2.點墨法(Dot-Plot) ----------------------------------46
2.7.共軛焦顯微鏡之免疫染色鑑定-------------------------- 46
三、結果-------------------------------------------------48
1.Tγ對嗜中性白血球的肌動蛋白之分佈和Raft間之關係-------- 48
1.1.BCA assay分析----------------------------------------48
1.2.西方點墨法分析---------------------------------------48
1.3.薄膜層析法分析---------------------------------------50
1.4.共軛焦顯微鏡分析-------------------------------------51
2.Sulfatide的角色----------------------------------------53
2.1.免疫覆蓋技術鑑定硫化磷脂和Tγ間之結合作用------------ 53
2.2.以抗體遮蔽效應探討硫化磷脂對Tγ之毒理影響------------ 54
四、討論-------------------------------------------------55
五、參考文獻---------------------------------------------65
1. Lee, C.Y., Lee, S.Y. (1979) Cardiovascular effect of snake venoms. Handbook of Experimental Pharmacology, Vol.52, 546-590 ( Lee, C.Y. Ed) Berlin; Springer-Verlag.

2. Chang, C.C. (1979) The action of snake venoms on nerve and muscle. Handbook of Experimental Pharmacology, Vol.52, 309-375 ( Lee, C.Y. Ed) Berlin; Springer-Verlag.

3. Wu, W. (1997) Diversity of Cobra Cardiotoxin. J. Toxincol- Toxin Review, 16(3), 115-134

4. Harvey, A.L. (1991) Cardiotoxins from cobra venoms. Reptile Venoms and Toxins, 85-106(Tu, A.T., Ed) New York; Marcel Dekker.

5. Changeux, J.P, Kasai M, Lee C.Y.(1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA. 67(3), 1241-1247.

6. Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY.(1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe Seylers Z Physiol Chem.Feb. 353, 243-262.

7. Gould, R.J, Polokoff, M.A, Friedman, P.A, Huang T.F, Holt, J.C, Cook ,J.J, Niewiarowski, S.(1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 195, 168-171.

8. Rossenburg, P. (1988) Phospholipase A2 toxins. Snake Toxins in Neurochemistry, 27-46. Halsted Press, New York.

9. Hseu, Y.C., Wu, W.G. (1995) Interaction between cardiotoxins and phospholipase A2 in membranes as related by the synergistic effect of their in vitro activity. FASRB J. A1371.

10. Chien, K.-Y., Huang, W.-N., Jean, J.-H., and Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. J. Biol. Chem. 266, 3252-3259.

11. Rees, B., and Bilwes, A. (1993) Three dimensional structures of neurotoxin and cardiotoxin. Chem. Res. Toxicol. 6, 385-406.

12. Dufton, M.J., and Hider, R.C. (1991) Snake Toxins (Harvey, A.L., Ed.) 259-302,; Pergamon Press, New York.

13. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. (1993) Refined three-dimensional solution structure of snake cardiotoxin: analysis the side chain organization suggests the existence of a possible phospholipids binding site. Biopolymers 33, 1659-1675.

14. Lin, S. R., Chang, K. L., and Chang, C. C. (1993) Chemical modification of amino groups in cardiotoxin III from Taiwan Cobra (Naja naja atra) venom. Biochem Mol Biol Int. 31, 175-184.

15. Lin,S. R., Chang, L. S. ,and Chang L. K. (2002) Separation and Structure-Function Studies of Taiwan Cobra Cardiotoxins. J.Pro.Chem. 21, 81-86.

16. Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of the interaction with 2 witterionic phospholipid dispersion. J. Biol. Chem. 269, 14473-14483.

17. Dufton, M. J., and Hidder, R. C. (1983) Conformational Properties of the neurotoxins and cytotoxins isolated from Elapid snake venom. Crit. Rev. Biochem. 14, 113-171.

18. Dufton, M. J., and Hidder, R. C. (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther. 36, 1-40.

19. Harvey, A. L. (1985) J. Toxical. Toxin Rev. 4, 41-69.

20. Ho, C. L., Lee, C. Y., and Lu, H. H. (1975) Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon. 3, 437-446.

21. Chang, C. C., Lee, C. Y. (1966) Electrophysical study of neuromuscular blocking action of cobra neurotoxin. Br. J. Pharmacol. Chemother. 28, 172-181.

22. Hider, R. C., Khader, F. (1982) Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom. Toxicon. 13, 437-446.

23. Chen, Y. H., Hu, C. T., Ynag, J. T. (1984) Membrane disintergration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide) Biochem. Int. 8, 329-338.

24. Zaheer A, Noronha SH, Hospattankar AV, Braganca BM. (1975) Inactivation of [Na+-K+]-stimulated ATPase by a cytotoxic protein from cobra venom in relation to its lytic effects on cells. Biochim Biophys Acta. 394, 293-303.

25. Bougis, P. E., Khelif, A. A., Rochat, H. (1989) On the inhibition of [Na+,K+]-ATPase by the components of Naja mossambica mossambica venom; Evidence for two distinct rat brain [Na+,K+]-ATPase activities. Biochemistry. 28, 3037-3043.

26. Tzeng, W. F. amd Chen, Y. H. (1988) Suppression of snake venom cardiotoxin-induced cardiomyocyte degradation by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95.

27. Fourie, A. M., Meltzer, S., Berman, M. C. and Louw, A. I. (1983) The effect of cardiotoxin on [Ca+,Mg2+]-ATPase of the erythrocyte and sarcoplasmic reticulum. Biochem. Int. 6, 581-591.

28. Hallett, M. B.,ed. (1989) The Neutriphil: Cellular Biochemistry and Physiology. CRC Press, Boca Ration, Fla.

29. Galvani, D. W., Cawley, J. C. (1992) Cytokine Therapy. Cambridge University Press, U.K.

30. Gallin, J. I., Goldstein, I. M., Snyderman, R. (1988) Inflammation : Basic Principles and Clinical Correlates. Raven Press, Mew York.

31. Rollins B. J. (1997) Chemokines. Blood. 90, 909-928.

32. Mantovani A.(1999) Chemokines: Introduction and overview. Chem Immunol. 72, 1-6.

33. Katanaev, VL. (2001) Signal transduction in neutrophil chemotaxis. Biochemistry (Mosc). 66, 351-368.

34. Worthen, GS. , Schwab, B. 3rd, Elson, EL., Downey, GP. (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science. 245, 183-186.

35. Firtel, RA., Chung, C. Y. (2000) The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays. 22, 603-615.

36. Rickert, P., Weiner, OD., Wang, F., Bourne, HR., Servant, G. (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends. Cell Biol. 10, 466-473.

37. Stephens, L., Ellson, C., Hawkins, P. (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell. Biol. 14, 203-213.

38. Chodniewicz, D., Zhelev D. V.(2003) Chemoattractant receptor–stimulated F-actin polymerization in the human
neutrophil is signaled by 2 distinct pathways. Blood. 101, 1181-1184

39. Chodniewicz, D., Zhelev D. V.(2003) Novel pathways of F-actin polymerization in the human neutrophil. Blood. 102, 2251-2258

40. Panaro, MA. , Mitolo, V. (1999) Cellular responses to fMLP challenging: a mini-review. Immunopharmacol Immunotoxicol. 21, 397-419.

41. Arai , H., Koizumi, H., Aoki, J., Inoue, K. (2002) Platelet-activating factor acetylhydrolase (PAF-AH). J. Biochem (Tokyo). 131, 635-640.

42. Crooks, SW. , Stockley, RA. (1998) Leukotriene B4. Int J Biochem Cell Biol. 30, 173-178.

43. Gerard, C., Gerard, NP. (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol. 12, 775-808.

44. Baggiolini, M. (1998) Chemokines and leukocyte traffic. Nature. 392, 565-568.

45. Menegazzi, R., Cramer, R., Patriarca, P., Scheurich, P., Dri, P. (1994) Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood. 84, 287-293.

46. Thelen, M., Uguccioni, M., Bosiger, J. (1995) PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem Biophys Res Commun. 217, 1255-62.

47. Oldenborg, PA., Sehlin, J. (1998) Insulin-stimulated chemokinesis in normal human neutrophils is dependent on D-glucose concentration and sensitive to inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase. J Leukoc Biol. 63, 203-208.

48. Reibman, J., Meixler, S., Lee, T. C., Gold, LI., Cronstein, BN., Haines, KA., Kolasinski, SL., Weissmann, G.(1991) Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc Natl Acad Sci U S A. 88, 6805-6809.

49. Hannigan, M., Zhan, L., Ai, Y., Huang, C. K. (1998) The role of p38 MAP kinase in TGF-beta1-induced signal transduction in human neutrophils. Biochem Biophys Res Commun. 246, 55-58.

50. Mitchison, T.J., Cramer, L.P. (1996) Actin-based cell motility and cell locomotion. Cell. 84, 371-379.

51. Torres, M., Thomas, D. (1999) Function of cytoskeleton in human neutrophils and methods for evaluation. J. of Immunol. Med. 232, 89-109.

52. Stossel, T. (1993) On the Crawling of Animal Cells. Science. 260, 1086-1094.

53. Vance, D. E., and Vance, J. E. (2002) Founctional roles of lipids in membranes. Biochemistry of lipids, Lipoproteins and Membranes.1-35 ( Bernardi, G. Ed) Paris; Elsevier.

54. Simons1, K., Ikonen, E. (2000) How Cells Handle Cholesterol. 290,1721-1726

55. Harder, T., Scheiffele, P., Verkade, P., Simons, K. (1998) J. Cell Biol. 141, 929.

56. Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., Luna, E. J. (2002) Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J. Bio. Chem. 277, 43399-43409.

57. Brown, D. A., London, E. (1997) Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? Biochemical and biophysical research communications. 240, 1-7.

58. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology. 12, 480-486.

59. Janes, P. W., Ley, S. C., Magee, A. I. (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. The Journal of Cell Biology. 147, 447-461

60. Nagafuku, M. Kabayama, K., Oka, D., Kato, A., Tani-ichi, S., Shimada, Y., Ohno-Iwashita, Y., Yamasaki, S., Saito, T., Iwabuchi, K., Hamaoka, T., Inokuchi, J. I., Kosugi, A. (2003) Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored protein, but does not impair signal transduction via the T cell receptor. Journal of Biological Chemistry. 278, 51920-51927.

61. Harder, T., Scheiffele, P., Verkade, P., Simons, K.(1998) Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components. The Journal of Cell Biology. 141, 929–942.

62. Konno,A., Nunogami, K., Wada, T., Yachie, A., Suzuki, Y., Takahashi, N., Suzuki, T., Miyawaki, T. (1996) Inhibitory action of sulfatide, a putative ligand for L-selectin, on B cell proliferation and Ig production. Int. Immunol. 8, 1905-1913.

63. Sikorski, J. N., Lindén, L., Eierman, D., Franzen , L., Molony , L., Andersson, T. (1996) Engagement of L-selectin impairs the actin polymerizing capacity of b2-integrins on neutrophils. Journal of Cell Science. 109, 2361-2369.

64. Mamoru Kyogashima, M. (2004) The role of sulfatide in thrombogenesis and haemostasis. Archives of Biochemistry and Biophysics. 426, 157–162.

65. PrasadaraoS, N. V., Was, C. A., Hackerg, J., Jannll, K., Kim, K. S. (1993) Adhesion of S-fimbriated Escherichia coli to Brain Glycolipids Mediated by sfaA Gene-encoded Protein of S-Fimbriae. The Journal OF Biological Chemistry. 268, 10356-10363.

66.(2003) Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood. J Thromb Haemost. 1, 1288-1295.

67. Bengtsson T, Grenegard M, Olsson A, Sjogren F, Stendahl O, Zalavary S. (1996) Sulfatide-induced L-selectin activation generates intracellular oxygen radicals in human neutrophils: modulation by extracellular adenosine. Biochim Biophys Acta. 1313, 119-129.

68. Chodniewicz, D., Zhelev, D. V. (2003) Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood. 101, 1181-1184.

69. Pozo, M. A. d., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G.W., Schwartz, M. A. (2004) Integrins regulate rac targeting by internalization of membrane domains. Science. 303, 839-842.

70. Guan, J. L. (2004) Integrins, rafts, Rac and Rho. Science. 303, 773-774.

71. Boyum, A. (1984) Separation of lymphocyte, granulocyte, and monocyte from blood using iodinated density gradient media. Methods in Enzymology. 108, 88-102.

72. Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I., Small, D. H. (2003) Cholesterol is necessary both for the toxic effect of A�� peptides on vascular smooth muscle cells and for A�� binding to vascular smooth muscle cell membranes. Journal of Neurochemistry. 84, 471-479.

73. Chamberlain, L. H., Gould, G. W. (2002) The Vesicle- and Target-SNARE Proteins That Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts Present on Distinct Intracellular Membranes. The Journal of Biological Chemistry. 277, 49750-49754.

74. Hildebrand, J., Marique, D., Vanhouche, J. (1975) Lipid composition of plasma membranes from human leukemic lymphocytes. Journal of Lipid Research. 16, 195-199.

75. Muthing, J., Cacic, M. (1997) Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconjugate Journal. 14, 19-28.

76. Farrer, R. G., Quarles, R. H. (1997) Expression of sulfated gangliosides in the central nervous system. Journal of Neurochemistry. 68, 878-881.

77. Huang, Y. H., Chu, S. T., Chen, Y. H. (1999) Seminal vesicle autoantigen, a novel phospholipid-binding protein secreted from luminal epithelium of mouse seminal vesicle, exhibits the ability to suppress mouse sperm motility. Biochem. J. 343, 241-248.

78. Kushi, Y., Arita, M., Ishizuka, I., Kasama, T., Fredman, P., Handa, S. (1996) Sulfatide is expressed in both erythrocytes and platelets of bovine orgin. Biochemica et Biophysica Acta. 1304, 254-262.

79. Deguchi, H., Fernandez, J. A., Hackeng, T. M., Banka, C. L., Griffin, J. H. (2000) Cardiolpin is a normal component of human plasma lipoproteins. PNAS. 97, 1743-1748.

80. Corcelli, A., Colella, M., Mascolo, G., Fanizzi, F. P., Kates, M. (2000) A novel glycolipid and phospholipids in the purple membrane. Biochemistry. 39, 3318-3326.

81. Stapleton A. E., Stroud, M. R., Hakomori, S. I., Stamm, W. E. (1998) The globoseries glycosphingolipid sialosyl glactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins. Infection and Immunity. 66, 3856-3861.

82. Mylvaganam, M., Lingwood, C. A. (1999) A convenient oxidation of natural glycosphingolipids to their “Ceramide acids” for neoglycoconjugation. The Journal of Biological Chemistry. 274, 20725-20732.

83. Roberts, D. D., Rao, C. N., Liotta, L. A., Gralnick, H. R., Ginsburg, V. (1966) Comparison of the specificities of laminin, thrombospondin and von Willebrand factor for binding to sulfated glycolipids. The Journal of Biological Chemistry. 261, 6872-6877.

84. Hartmann, E., Lingwood, C. A., Reidl, J. (2001) Heat-inducible surface stress protein (Hsp70) mediates sulfatide recognition of the respiratory pathogen Haemophilus influenzae. Infection and immunity. 69, 3438-3441.

85. Macala, L. J., Yu, R. K., Ando, S. (1988) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. Journal of Lipid Research. 24, 1243-1250.

86. Babiychuk, E. B., Draeger, A. (2000) Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. The Journal of Cell Biology. 150, 1113-1123.

87. Murphy-Ullrich, J. E., Westrick, L. G., Esko, J. D., Mosher, D. F. (1988) Altered metabolism of thrombospondin by Chinese hamster ovary cells defective in glycosaminoglycan synthesis. The Journal of Biological Chemistry. 263, 6400-6406.

88. Fukuda, S., Schmid-Schonbein, G. W. (2003) Regulation of CD18 expression on neutrophils in response to fluid shear stress. PNAS. 100, 13152-13157.

89. Yates-Siilata, K. E., Dahms, T. E., Webster, R. O., Heuertz, R. M. (2004) C-reactive protein increases F-actin assembly and cortical distribution with resultant loss of lamellipod formation in human neutrophils. Cell Biology International. 28, 33-39.

90. Watanabe, J., Marathe, G. K., Neilsen, P. O., Weyrich, A. S., Harrison, K. A., Murphy, R. C., Zimmerman, G. A., McIntyre, T. M. (2003) Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. The journal of Biological Chemistry. 278, 33161-33168.

91. Bird, M. M., Lopez-Lluch, G., Ridley, A. J., Segal, A. W. (2003) Effects of microinjected small GTPases on the actin cytoskeleton of human neutrophils. J. Anat. 203, 379-389.

92. Ayub, K., Hallett, M. B. (2004) Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology. 111, 8-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top