跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱英豪
研究生(外文):Ying-Hao Chu
論文名稱:Ba(Mg1/3Ta2/3)O3緩衝層利用於低溫成長Pb(Zr1-xTix)O3薄膜之研究
論文名稱(外文):Study on Ba(Mg1/3Ta2/3)O3 Buffer Layer for Low Temperature Deposition of Pb(Zr1-xTix)O3 Thin Films
指導教授:劉國雄劉國雄引用關係林諭男林諭男引用關係林樹均
指導教授(外文):Kuo-Shung LiuI-Nan LinSu-Jien Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:288
中文關鍵詞:雷射製程PZTBMT薄膜體聲波元件鐵電微波介電光學特性
外文關鍵詞:Laser ProcessPZTBMTFBARFerroelectricMicrowave DielectricOptical Properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
Pb(Zr1-xTix)O3 (PZT)材料具有多項優異特性,適合發展很多功能性之元件。但是要將PZT材料開發於元件應用時,會遭遇許多材料問題,比如與Si基板擴散問題、與金屬電極之接面問題,還有最重要之製程溫度問題,如果沒有辦法同時解決目前存在之這些問題,這將使得PZT元件於開發上受到很大之限制,而無法實用化。本研究以材料製程為開發重點,利用BMT材料結構與晶格常數與PZT匹配以及可於低溫合成之優點,積極開發BMT為PZT材料緩衝層。同時由於BMT本身為最優良之微波介電薄膜,開發過程同時利用微波探針系統(EMP),量測(100)優選BMT薄膜之微波介電特性(K=22.0 & tanδ=0.0043)。
接下來利用低溫雷射剝鍍製程,搭配BMT緩衝層之使用,解決了PZT材料與Si基礎基板之交互擴散問題,由於PZT材料之成長完全依賴PZT,因此透過製程參數之調變,探討BMT結晶性與表面形貌對於PZT薄膜成長之影響,並透過TEM之分析建立PZT材料於BMT材料上成長之模型,同時藉由C-V之量測Pt/PZT/BMT/Si結構,可以在400℃製程溫度之薄膜,得到8.0 V之記憶窗。同時間PZT材料與金屬電極介面會產生之鐵電疲勞問題,本研究亦利用BMT緩衝層隔開PZT與金屬之間之接觸形成,BMT/PZT/BMT三明治結構,可以在400℃製程溫度開發出Pr=29.7 μC/cm2與EC=82.5之優良鐵電薄膜,同時經過鐵電疲勞測試,鐵電特性經過1011次之測試,仍不會有下降之趨勢,使得PZT材料更接近於鐵電記憶體之應用。
同時利用製程參數之調整在Sapphire基板上低溫合成高品質(100)之PZT薄膜。如此高品質之薄膜,可以應用於表面聲波元件,更可利用PZT之非線性特性,開發成為可調頻之微波元件,以及PZT之聲光或電光效應,開發成為光學主動元件。為了確定應用之可行性,本研究亦對高品質之PZT薄膜進行微波介電特性(K=105.9 & tanδ=0.0121)與光學特性(n=2.30 & β=2.46 dB/cm)之量測。
為了使PZT高品質薄膜更貼近應用,不受成長基板之限制,積極開發雷射剝離技術,將PZT薄膜成功由sapphire成長基板轉移至Si應用基板,並保持其良好之鐵電特性(Pr=34.4 μC/cm2、EC=360 kV/cm)。同時亦利用低溫雷射剝鍍技術開發數種PZT材料之之奈米粉末與奈米柱,提供PZT材料應用於奈米領域更多形式之選擇。
目前無線通訊射頻前端之線路尺寸,主要受到高頻被動元件所主宰,所以高頻被動元件之微小化,乃為射頻前端線路縮小之主要關鍵,配合單石式微波積體電路之電路設計,才能達到單一系統晶片與降低成本之目標。目前主動元件主要利用薄膜技術來製作,因此高頻被動元件之薄膜化為此一趨勢成敗之關鍵。薄膜體聲波元件具有可整合與尺寸小之優點,為目前最熱門之開發元件。PZT材料應用於體聲波薄膜共振器,具有高機電耦合係數特性,可作為寬頻濾波器上之應用,是十分具有潛力的材料。
最後本研究建立PZT薄膜體聲波元件之分析基礎,透過適當之元件設計與製作流程,將之前400℃製程低溫開發之PZT/BMT薄膜整合於製程中,可以開發出PZT薄膜體聲波元件之雛形,透過製程之檢定,確定解決PZT薄膜應用於元件之材料問題。
摘要……………………………………………………..I
目錄……………………………………………………III
表目錄………………………………………………...VII
圖目錄………………………………………………..VIII

第一章 緒論……………………………………………1
1.1 前言……………………………………………………….1
1.2 Pb(Zr,Ti)O3(PZT)材料之簡介……………………………2
1.2.1 PZT材料之特性與應用………………………………………...2
1.2.2 PZT材料應於元件之材料問題…………….…………………..4
1.3 Ba(Mg1/3Ta2/3)O3(BMT)緩衝材料之簡介………………18
1.4 準分子雷射製程………………………………………21
1.4.1 雷射剝鍍製程…………………………………………………22
1.4.2 雷射剝離製程…………………………………………………25
1.4.3 雷射退火製程…………………………………………………29
1.5 高頻聲波元件之簡介…………………………………31
1.5.1 薄膜體聲波共振元件…………………………………………33
1.5.2 薄膜表面聲波共振元件………………………………………38
1.5.3 薄膜聲波共振元件之電路響應與量測方法…………………40
1.5.4 薄膜聲波共振濾波器之操作原理……………………………40
1.5.5 應用實例 --- 雙工器與濾波器………………………………42
1.5.6 PZT材料於高頻聲波元件之應用…………………………….46
第二章 實驗方法…………………………………...107
2.1 靶材之製備…………………………………………….107
2.1.1 Ba(Mg1/3Ta2/3)O3靶材之製備………………………………107
2.1.2 Pb(Zr,Ti) O3靶材之製備……………………………………107
2.2 準分子雷射製程……………………………………….108
2.2.1 雷射剝鍍製程………………………………………………..108
2.2.2 雷射剝離製程………………………………………………..109
2.2.3 雷射退火製程………………………………………………..110
2.3 材料晶體結構分析與微結構之觀察…………………110
2.3.1 材料晶體結構之分析(XRD)………………………………..110
2.3.2 材料微結構之觀察(SEM)…………………………………110
2.3.3 原子力顯微鏡之觀察與分析(AFM)………………………111
2.3.4 材料細微結構之觀察(TEM)………………………………111
2.3.5 二次離子縱深成分分析(SIMS)……………………………111
2.4 材料特性之量測……………………………………….111
2.4.1 塊材微波特性之量測………………………………………..111
2.4.2 薄膜介電特性之量測………………………………………..112
2.4.3 薄膜微波介電特性之量測…………………………………113
2.4.4 拉曼光譜之量測……………………………………………..113
2.4.5 光學特性之量測……………………………………………..113
2.4.6 電容-電壓曲線之量測 (C-V)……………………………….113
2.4.7 鐵電特性之量測 (P-E)……………………………………114


第三章 PZT材料開發結果與討論………………121
3.1 BMT薄膜之製備與其微波介電特性之研究…………121
3.1.1 研究動機……………………………………………………..121
3.1.2 微波介電薄膜元件之模擬…………………………………..121
3.1.3 BMT塊材製作實驗結果與討論……………………………..122
3.1.4 BMT薄膜製作實驗結果與討論……………………………..123
3.1.5 結語…………………………………………………………..131
3.2利用BMT緩衝層製備PZT薄膜於Si基板及其特性之研究…………………………….………………………132
3.2.1 研究動機……………………………………………………..132
3.2.2 結果與討論…………………………………………………132
3.2.3 結語…………………………………………………………..141
3.3 利用BMT緩衝層製備PZT薄膜於Si基板及其特性之研究…………………………….………………………142
3.3.1 研究動機……………………………………………………..142
3.3.2 結果與討論…………………………………………………142
3.3.3 結語…………………………………………………………..149
3.4 利用BMT緩衝層製備PZT薄膜於Sapphire基板與其光學與微波特性之研究…………………………………150
3.4.1 研究動機……………………………………………………..150
3.4.2 結果與討論…………………………………………………..150
3.4.3 結語…………………………………………………………154
3.5 利用雷射剝離技術轉移高品質PZT薄膜於Si基板之研究………………………………………………………155
3.5.1 研究動機……………………………………………………..155
3.5.2 結果與討論…………………………………………………..155
3.5.3 結語…………………………………………………………..160
3.6 利用雷射剝鍍法製作奈米結構之PZT材料…………161
3.6.1 研究動機……………………………………………………..161
3.6.2 結果與討論…………………………………………………..161
3.6.3 結語…………………………………………………………..164

第四章 PZT高頻聲波元件之製作………………...240
4.1 薄膜體聲波元件計算之結果...………………………………..240
4.2 薄膜體聲波元件製作與量測之結果.....………………………249

第五章 總結………………………………………...268

參考文獻…………………………………………….271

作者簡介..................................284
1. http://www.agilent.com
2. H. Morkner, R. Ruby, M. Frank, and D. Figueredo: 1999 IEEE MIT-S Digest, 1393 (1999).
3. C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz: Proceeding of the IEEE 86, 1756 (1998).
4. http://www.murata.com
5. http://www.kyocery.com
6. S. Fujishima: “The history of ceramic filters”, IEEE Trans. Ultra. Ferroelectr. Freq. Contr. 47, 1 (2000).
7. A. J. Moulson and J. M. Herbert: “Electroceramics”, Chapman & Hall (1990).
8. Y. M. Chiang, D. Birnie III and W. D. Kingery: “Physical Ceramics”, Wiley (1997).
9. R. Ramesh: “Thin film ferroelectric materials and devices”, Kluwer Academic Publishers (1997).
10. B. Willing, M. Kohli, P. Muralt, N. Setter, and O. Oehler: “Gas spectrometry based on pyroelectric thin-film arrays integrated on silicon”, Sens. & Actuat. 66, 109 (1998).
11. P. Muralt: “PZT thin films for microsensors and actuators: Where do we stand ?”, IEEE Trans. Ultra. Ferroelectr. Freq. Contr. 47, 903 (2000).
12. D. Dimos, and C. H. Mueller: “Perovskite thin films for high-frequency capacitor applications”, Annu. Rev. Mater. Sci. 28, 397 (1998).
13. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe, and E. Osakabe: “Fabrication of electro-optic Pb(Zr,Ti)O3 heterostructure waveguides on Nb-doped SrTiO3 by solid-phase epitaxy”, Appl. Phys. Lett. 74, 2761 (1999).
14. R. Ramesh, S. Aggarwal and O. Auciello: “Science and Technology of Ferroelectric Thin Films and Heterostructures for Non-volatile Ferroelectric Memory”, Mat. Sci. Eng. R. 32, 191 (2001).
15. http://www.rhom.com.tw
16. Auciello, J. F. Scott, and R. Ramesh: Phys. Today 51, 22 (1998).
17. J. F. Scott and C. A. P. Dearaujo: “Ferroelectric Memories”, Science 246, 1400 (1989).
18. J. F. Scott, C. A. Araujo, B. M. Meinick, L. D. McMillan and R. Zuleeg: “Quantitative Measurement of Space-Charge Effects in Lead Zirconate- Titanate Memories”, J. Appl. Phys. 70, 382 (1991).
19. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab and J. C. Lee: “A Model for Electrical Conduction in Metal-Ferroelectric-Metal Thin Film Capacitor“, J. Appl. Phys. 75, 1014 (1994).
20. L. A. Bursill, I. M. Reaney, D. P. Vijay and S. B. Desu: “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes”, J. Appl. Phys. 75, 1521 (1994).
21. J. J. Lee, C. L. Thio, and S. B. Desu: “Electrode Contacts on Ferroelectric Pb(ZrxTi1-x)O3 and SrBi2Ta2O9 Thin Films and Their Influence on Fatigue Properties”, J. Appl. Phys 78, 5073 (1995).
22. I. Stolichnov, and A. Tagantsev: “Space-charge Influenced-injection Model for Conduction in Pb(ZrxTi1-x)O3 Thin FIlms”, J. Appl. Phys. 84, 3216 (1998).
23. B. Nagaraj, S. Aggarwal, T. K. Song, T. Sawhney and R. Ramesh: “Leakage Current Mechanisms in Lead-based Thin-Film Ferroelectric Capacitors”, Physical Review B 59, 16 022 (1999).
24. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada: “Top-interface-controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric Capacitors”, Appl. Phys. Lett. 74, 3552 (1999).
25. J. F. Scott: “Device Physics of Ferroelectric Thin-Film Memories”, Jpn. J. Appl. Phys. 38, 2272 (1999).
26. C. H. Lin, P. A. Friddle, C. H. Ma, A. Daga and H. Chen: “Effect of thickness on the electrical properties of metalorganic chemical vapor deposited Pb(Zr, Ti)O3 (25-100 nm) thin films on LaNiO3 buffered Si”, J. Appl. Phys 90, 1509 (2001).
27. Y. Masuda and T. Nozaka: “The influence of various upper electrodes on fatigue properties of perovskite Pb(Zr,Ti)O3 thin films”, Jpn. J. Appl. Phys. 42, 5941 (2003).
28. W. L. Warren, D. Dimos, B. A. Turtle, R. D. Nasby and G. E. Pike: “Electronic Domain Pining in Pb(Zr,Ti)O3 Thin Films and Its Role in Fatigue”, Appl. Phys. Lett. 65, 1018 (1994).
29. W. L. Warren, D. Dimos, B. A. Turtle, G. E. Pike, R. W. Schwartz, P. J. Clews and D. C. Mclntyre: “Polarization Suppression in Pb(Zr,Ti)O3 Thin Films”. J. Appl. Phys. 77: 6695 (1995).
30. P. L. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. Veldhoven: “Ferroelectric Properties and Fatigue of PbZr0.51Ti0.49O3 Thin-Films of Varying Thickness - Blocking Layer Model”, J. Appl. Phys. 74, 2405 (1994).
31. J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf: “Thickness Dependence of The Switching Voltage in All-Oxide Ferroelectric Thin-Film Capacitors Prepared by Pulsed Laser Deposition”, J. Appl. Phys. 81, 2777 (1997).
32. E. L. Colla, D. V. Taylor, A. K. Tagantsev, and N. Setter: “Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes”, Appl. Phys. Lett. 72, 2478 (1998).
33. F. Yang, P. Bao, H. L. W. Chan, C. L. Choy and Y. Wan: “The Grain Size Effect of Pb(Zr0.3Ti0.7)O3 Thin Films”, Thin Solid Films 406, 282 (2002).
34. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee and A. Safari: “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O Heterostructures”, Appl. Phys. Lett. 61, 1537 (1992).
35. J. Lee, L. Johnson, A. Safari, R. Ramesh, T. Sands, H. Gilchrist and V. G. Keramidas: “Effects of Crystalline Quality and Electrode Material on Fatigue in Pb(Zr,Ti)O3 Thin Film Capacitors”, Appl. Phys. Lett. 63, 27 (1993).
36. C. B. Eom, R. B. V. Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen and D. K. Fork: “Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) Isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63, 2570 (1993).
37. R. Ramesh, H. Gilchrist, T. Sands, V. G. Keramidas, R. Haakenaasen and D. K. Fork: “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon Via Template Growth”, Appl. Phys. Lett. 63, 3592 (1993).
38. R. Dat, D. J. Lichtenwalner, O. Auciello and I. Kingon: “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 Ferroelectric Capacitors on Platinized Silicon with No Polarization Fatigue“, Appl. Phys. Lett. 64, 2673 (1994).
39. R. Ramesh, J. Lee, T. Sands, V. G. Keramidas and O. Auciello: “Oriented Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on [100] Pt/SiO2 Si Substrates Using a Bismuth Titanate Template Layer”, Appl. Phys. Lett. 64, 2511 (1994).
40. G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J. Tang and J. H. Chu: “PbZr0.5Ti0.5O3/La0.5Sr0.5CoO3 Heterostructures Prepared by Chemical Solution Routes on Silicon with No Fatigue Polarization”, Appl. Phys. Lett. 79, 3476 (2001).
41. F. Wang, and S. Leppavuori: “Properties of Epitaxial Ferroelectric PbZr0.56Ti0.44O3 Heterostructures with La0.5Sr0.5CoO3 Metallic Oxide Electrodes”, J. Appl. Phys. 82, 1293 (1997).
42. Q. Li, J. Yin, C. Xiao and Z. Liu: “Enhanced Ferroelectric Properties of Pb(Ta0.05Zr0.48Ti0.47)O3 Thin Films on Pt/TiO2/SiO2/Si Substrates Using La0.67Sr0.33MnO3 Buffer Layers”, J. Phys. D: Appl. Phys. 33, 107 (2000).
43. W. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang: “Top-interface-controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.48)O3 Ferroelectric Thin Films on La0.7Sr0.3MnO3 Electrodes”, Appl. Phys. Lett. 77, 3441 (2000).
44. T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu: “Preparation of Pb(Zr,Ti)O3 Thin Films on Electrodes Including IrO2”, Appl. Phys. Lett. 65, 1522 (1994).
45. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu: “Preparation of Pb(Zr,Ti)O3 Thin Films on Ir and IrO2 Electrodes”, Jpn. J. Appl. Phys. 33, 5207 (1994).
46. H. N. Al-Shareef, O. Auciello, and A. I. Kingon: “Electrical-Properties of Ferroelectric Thin-Film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys. 77, 2146 (1995).
47. K. B. Lee, S. Tirumaia and S. B. Desu: “Highly c-axis Oriented Pb(Zr,Ti)O3 Thin Films Grown on Ir Electrode Barrier and Their Electrical Properties”, Appl. Phys. Lett. 74, 1484 (1999).
48. W. Wang, T. Fujii, T. Karaki and M. Adachi: “Preparation and Electrical Properties of Rhombohedral Pb(ZrxTi1-x)O3 Thin Films by RF Magnetron Sputtering Method”, Jpn. J. Appl. Phys. 38, 6807 (1999).
49. M. S. Chen, T. B. Wu and J. M. Wu: “Effect of Textured LaNiO3 Electrode on The Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films“, Appl. Phys. Lett. 68, 1430 (1996).
50. G. C. Chao and J. M. Wu: “Effect of LaNiO3 Electrode on Electrical Properties of RF-Magnetron-Sputtered Pb(Zr,Ti)O3 Ferroelectric Thin Films”, Jpn. J. Appl. Phys. 40, 1306 (2001).
51. K. Lee, B. R. Rhee and C. Lee: “Characteristics of Ferroelectric Pb(Zr,Ti)O3 Thin Films Having Pt/PtOX Electrode Barriers”, Appl. Phys. Lett. 79, 821 (2001).
52. C. L. Liu, Z. Y. Lee, T. B. Wu, S. L. Lung and R. Liu: “Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOX/Pt Electrode”, Jpn. J. Appl. Phys. 41, 6054 (2002).
53. C. S. Liang, J. M. Wu and M. C. Chang: “Ferroelectric BaPbO3/PbZr0.53Ti0.47O3/BaPbO3 Heterostructures”, Appl. Phys. Lett. 81, 3624 (2002).
54. F. Yan, Y. Wang, H. L. W. Chan and C. L. Choy: “Ferroelectric Properties of (Ba0.5Sr0.5)TiO3/Pb(Zr0.52Ti0.48)O3/(Ba0.5Sr0.5)TiO3 Thin Films with Platinum Electrodes”, Appl. Phys. Lett. 82, 4325 (2003).
55. S. Y. Wu: IEEE Trans. Electron Devices ED-21, 499 (1974).
56. K. Sugibuchi, Y. Kurogi, and N. Endo: J. Appl. Phys. 46, 2877 (1975).
57. S. Y. Wu: Ferroelectrics 11, 379 (1976).
58. S. L. Miller and P. J. McWhorter: “Physics of The Ferroelectric Nonvolatile Memory Field Effect Transistor”, J. Appl. Phys. 72, 5999 (1992).
59. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui: “Interaction of PbTiO3 Films with Si Substrate”, Jpn. J. Appl. Phys. 33, 5172 (1994).
60. E. Tokumitsu, K. Itani, B. K. Moon, H. Ishiwara: Mater. Res. Soc. Symp. Proc. 361, 427 (1995).
61. D. S. Shin, H. N. Lee, Y. T. Kim, I. H. Choi and B. H. Kim: “Electrical Properties of Pt/SrBi2Ta2O9/CeO2/SiO2/Si Structure for Nondestructive Readout Memory”, Jpn. J. Appl. Phys. 37, 4373 (1998).
62. S. K. Lee, Y. T. Kim, S. Kim and C. E. Lee: “Effects of Coercive Voltage and Charge Injection on Memory Windows of Metal-Ferroelectric- Semiconductor and Metal-Ferroelectric-Insulator-Semiconductor Gate Structures”, J. Appl. Phys. 91, 9303 (2002).
63. T. Yamaguchi, M. Koyama, A. Takashima, and S. Takagi: “Improvement of Memory Characteristics of Metal-Ferroelectric/Insulating Buffer Layer/Semiconductor Structure by Combination of Pulsed Laser Deposited SrBi2Ta2O9 Films and Ultra-Thin SiN Buffer Layer”, Jpn. J. Appl. Phys. 39, 2058 (2000).
64. Y. Fujisaki, T. Kijima and H. Ishiwara: “High-Performance Metal- Ferroelectric-Insulator-Semiconductor Structures with a Damage-Free and Hydrogen-Free Silicon-Nitride Buffer Layer”, Appl. Phys. Lett. 78, 1285 (2001).
65. C. L. Sun, S. Y. Chen, S. B. Chen and A. Chin: “Effect of Annealing Temperature on Physical and Electrical Properties of Bi3.25La0.75Ti3O12 Thin Films on Al2O3 Buffered Si”, Appl. Phys. Lett. 80, 1984 (2002).
66. T. Hirai, K. Teramoto, T. Nishi, T. Goto and Y. Tarui: “Formation of Metal/Ferroelectric/Insulator/Semiconductor Structure with a CeO2 Buffer Layer”, Jpn. J. Appl. Phys. 33, 5219 (1994).
67. T. Hirai, K. Teramoto, K. Nagashima, H. Koike and Y. Tarui: “Characterization of Metal/Ferroelectric/Insulator/Semiconductor Structures with CeO2 Buffer Layer”, Jpn. J. Appl. Phys. 34, 4163 (1995).
68. I. Sakai, E. Tokumitu and H. Ishiwara: “Preparation and Characterization of PZT Thin Films on CeO2(111)/Si(111) Structures”, Jpn. J. Appl. Phys. 35, 4987 (1995).
69. N. A. Basit, H. K. Kim, and J. Blachere: “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors”, Appl. Phys. Lett. 73, 3941 (1998).
70. M. Liu, H. K. Kim, and J. Blachere: “Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories”, J. Appl. Phys. 91, 5985 (2002).
71. E. Tokumitsu, K. Itani, B. K. Moon, and H. Ishiwara: “Crystalline Quality and Electric-Properties of PbZrXTi1-XO3 Thin-Films Prepared on SrTiO3-Covered Si Substrates”, Jpn. J. Appl. Phys. 34, 5202 (1995).
72. E. Tokumitsu, R. Nakamura, and H. Ishiwara: “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET's using PLZT/STO/Si(100) structures”, IEEE Electron Device Lett. 18, 160 (1997).
73. Y. P. Wang, L. Zhou, X. B. Lu, and Z. G. Liu: “C-V characteristics of Pt/PbZr0.53Ti0.47O3/LaAlO3/Si and Pt/PbZr0.53Ti0.47O3/La0.85Sr0.15CoO3/LaAlO3/Si”, Appl. Surf. Sci. 205, 176 (2003).
74. R. Ramesh, S. Aggarwal and O. Auciello: “Science and Technology of Ferroelectric Thin Films and Heterostructures for Non-volatile Ferroelectric Memory”, Mat. Sci. Eng. R. 32, 191 (2001).
75. K. Sreenivas, M. Sayer, and P. Garrett: “Properties of DC magnetron-sputtered lead zirconate titanate thin-films”, Thin Solid Films 172, 251 (1989).
76. O. Auciello, R. Dat, and R. Ramesh, in: C. A. Paz de Araujo, J. F. Scott, G. W. Tayor (Eds.), “Ferroelectric Thin Films: Synthesis and Basic Properties” (1996).
77. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, K. L. Merkle: “Substrate effects on the structure of epitaxial PbTiO3 thin-films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor-deposition”, J. Appl. Phys. 78, 2607 (1995).
78. J. S. Speck, A. C. Daykin, A. Seifert, A. E. Romanov, and W. Pompe: “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin-films 3. interfacial defects and domain misorientation”, J. Appl. Phys. 78, 1696 (1995).
79. M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen: “Chemical Vapor-Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc. 132, 2677 (1985).
80. J. Si and S. B. Desu: “RuO2 Films by Metal-Organic Chemical-Vapor-Deposition”, J. Mater. Res. 8, 2644 (1993).
81. G. R. Bai, A. Wang, C. M. Foster, and J. Vetrone: “Low-temperature growth and orientational control in RuO2 thin films by metal-organic chemical vapor deposition”, Thin Solid Films 310, 75 (1997).
82. G. R. Bai, A. Wang, I. F. Tsu, C. M. Foster, and O. Auciello: “In-situ low temperature growth and orientation control in MOCVD PZT/RuO2 thin film heterostructures on SiO2/Si substrates”, Inter. Ferroelectr. 21, 291 (1998).
83. C. C. Hsueh and M. L. Mecartney: “Microstructure development and electrical properties of sol-gel prepared lead zirconate-titanate thin films”, J. Mater. Res. 6, 2208 (1991)
84. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. T. Tissot, and J. Michael: “ Microstructure evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition”, J. Mater. Res. 7, 1876 (1992).
85. C. K. Kwok, and S. B. Desu: “Formation kinetics of PbZrxTi1-xO3 thin films”, J. Mater. Res. 9, 1728 (1194).
86. K. G. Brook, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter: “Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates”, J. Mater. Res. 9, 2540 (1994).
87. Y. Liu and P. P. Phule: “Nucleation- or Growth-Controlled Oreientation Development in Chemically Derived Ferroelectric Lead Zirconate Titanate (Pb(ZrxTi1-x)O3, x=0.4) Thin FIlms”, J. Am. Ceram. Soc. 79, 495 (1996).
88. S. Hirano, T. Yogo, K. Kikuta, Y. Araki, M. Saitoh, and S. Ogasahara: “Synthesis of Highly Oriented Lead Zirconate-Lead Titanate Film Using Metallo-organics”, J. Am. Ceram. Soc. 75, 2785 (1992).
89. H. Suzuki, M. B. Othman, K. Murakami, S. Kaneko, and T. Hayashi: “Low-Temperature Processing of Ferroelectric Pb(Zr0.53Ti0.47)O3 Thin Film form Molecular-Designed Alkoxide Precursor Solution”, Jpn. J. Appl. Phys. 35, 4896 (1996).
90. H. Suzuki, T. Koizumi, Y. Kondo, and S. Kaneko: “Low-temperature Processing of Pb(Zr0.53Ti0.47)O3 Thin Film from Stable Precursor Sol”, J. Eur. Ceram. Soc. 19, 1397 (1999).
91. K. Maki, N. Soyama, K. Nagamine, S. Mori, and K. Ogi: “Low-Temperature Crystallization of Sol-Gel Derived Pb(Zr0.4Ti0.6)O3 Thin Films”, Jpn. J. Appl. Phys. 40, 5533 (2001).
92. Z. Huang, Q. Zhang, and R. W. Whatmore: “Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method”, J. Appl. Phys. 85, 7355 (1999).
93. Z. Huang, Q. Zhang, and R. W. Whatmore: “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films”, J. Appl. Phys. 86, 1662 (1999).
94. B. T. Liu, K. Maki, S. Aggarwal, B. Nagaraj, V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, and O. Auciello: “Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer”, Appl. Phys. Lett. 80, 3599 (2002).
95. B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, D. C. Schlom, W. Tian, X. Q. Pan, F. J. Walker, and R. A. Mckee: “Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon”, Appl. Phys. Lett. 80, 4801 (2002).
96. K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu: “Controlling crystallization of Pb(Zr,Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering”, Appl. Phys. Lett. 82, 1263 (2003).
97. K. Amanuma, S. Kobayashi, T. Tatsumi, Y. Maejima, H. Hada, J. Yamada, T. Miwa, H. Koike, H. Toyoshima, and T. Kunio: “Characteristics of 0.25μm Ferroelectric Nonvolatile Memory with a Pb(Zr,Ti)O3 Capacitor on a Metal/Via-Stacked Plug”, Jpn. J. Appl. Phys. 39, 2098 (2000).
98. H. C. Lee and W. J. Lee: “Preparation and Characterization of Pb(Zr,Ti)O3 Films Deposited on Pt/RuO2 Hybrid Electrode for Ferroelectric Random Access Memory Devices”, Jpn. J. Appl. Phys. 40, 6566 (2001).
99. H. Fujisawa, K. Kita, M. Shimizu, and H. Niu: “Low-temperature Fabrication of Ir/Pb(Zr,Ti)O3/Ir Capacitors Solely by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 40, 5551 (2001).
100. M. Aratani, T. Oikawa, T. Ozeki, and H. Funakubo: “Epitaxial-grade polycrystalline Pb(Zr,Ti)O3 film deposited at low temperature by pulsed-metalorganic chemical vapor deposition”, Appl. Phys. Lett. 79, 1000 (2001).
101. K. Tokita, M. Aratani, and H. Funakubo: “Effect of atmosphere during heating of substrate on the low temperature deposition of metalorganic chemical vapor deposited Pb(Zrx,Ti1-x)O3 thin films”, Appl. Phys. Lett. 81, 898 (2002).
102. G. Asano, T. Oikawa, and H. Funakubo: “Highly-Reproducible Preparation of Pb(Zr,Ti)O3 Films at Low Deposition Temperature by Metal Organic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 42, 2801 (2003).
103. K. Tokita, M. Aratani, and H. Funakubo: “Substrate effect on the crystal structure and ferroelectricity of low-temperature-deposited Pb(Zr,Ti)O3 thin films by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 82, 4122 (2003).
104. G. Asano, H. Morioka, H. Funakubo, T. Shibutami, and N. Oshima: “Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395oC”, Appl. Phys. Lett. 83, 5506 (2003).
105. 賴昇志: “以LaNiO3下電極開發PZT鐵電記憶體低溫製程之研究”, 國立清華大學碩士論文 (2001).
106. S. L. Lung, S. S. Chen, C. W. Tasi, T. T. Sheng, S. C. Lai, C. L. Liu, T. B. Wu, and R. Liu: “A low temperature LNO/PZT/LNO ferroelectric capacitor-over interconnect (COI) FeRAM module for modular SOC”, Inter. Ferroelectr. 48, 149 (2002).
107. 藍文安:”添加劑對鋇鎂鉭微波介電陶瓷之影響”,國立清華大學碩士論文(2001).
108. F. Galasso et al.: J. Am. Chem. Soc. 83, 2830 (1960).
109. S.Nomura et al.: Jpn. J. Appl. Phys. 21, 624 (1982).
110. F. Nomura et al.: Inorg. Chem. 2, 482 (1963).
111. P. C. Joshi and S. B. Desu : “Properties of Ba(Mg1/3Ta2/3)O3 Thin Films Prepared by Metalorganic Solution Deposition Technique for Microwave Applications”, Appl. Phys. Lett. 73, 1080 (1998).
112. D. B. Chirsey: “Pulsed Laser Deposition of Thin Film”, Ch. 1~ Ch.13, (1994).
113. M. Ohring: “The Materials Science of Thin Films”, Ch. 3 & Ch. 5, Academic Press Inc. (1992).
114. J. C. Miller: “Laser Ablation and Deposition”, Ch. 11, (1998).
115. A. Grill: “Cold Plasma in Materials Fabrication”, Ch. 1 & Ch. 3, (1998).
116. W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung and T. Sands: “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off”, J. Electr. Mater. 28,1409 (1999).
117. W. S. Wong, Y. Cho, E. R. Weber and T. Sands: “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off”, Appl. Phys. Lett.75,1887 (1999).
118. T. Sands, E. D. Marshall, and L.C. Wang: “Solid-Phase Regrowth of Compound Semiconductors by Reaction-Driven Decompostion of intermediate Phases”, J. Mater. Res. 3, 914 (1988).
119. L. H. Allen, L. S. Hung, K. L. Kavanagh, J. R. Phillips, A. J. Yu, and J. W. Mayer: “Ohmic Contacts to N-Gaas Using In/Pd Metallization”, Appl. Phys. Lett. 51, 326 (1987).
120. F. P. Incropera and D. P. DeWitt: ”Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 43-47 (1985).
121. L. Tsakalakos and T. Sands: Mater. Res. Soc. Symp. Proc. 596, 549 (2000).
122. L. Tsakalakos and T. Sands: “Epitaxial Ferroelectric (Pb,La)(Zr,Ti)O3 Thin Films on Stainless Steel by Excimer Laser Liftoff”, Appl. Phys. Lett. 76, 227 (2000).
123. L. Tsakalakos, T. Sands, E. Carleton and K. M. Yu: “Modification of (Pb,La)(Zr,Ti)O3 Thin Films During Pulsed Laser Liftoff from MgO Substrates”, J. Appl. Phys. 94, 4047 (2003).
124. X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin and Y. N. Wang: “Laser-induced Phase Transformation from Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films with The Substrate at Room Temperature”, Appl. Phys. Lett. 65, 2015 (1994).
125. X. M. Lu, J. S. Zhu, W. S. Hu, Z. G. Liu and Y. N. Wang: “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 amorphosu Films”, Appl. Phys. Lett. 66, 2481 (1995).
126. Y. Zhu, J. Zhu, Y. J. Song and S. B. Desu: “Laser-assisted Low Temperature Processing of Pb(Zr,Ti)O3 Thin Film”, Appl. Phys. Lett. 73, 1958 (1998).
127. C. F. Chou, H. C. Pan and C. C. Chou: “Electric Properties and Microstructures of PbZrTiO3 Thin Films Prepared by Laser Annealing Techniques”, Jpn. J. Appl. Phys. 41, 6679 (2002).
128. D. M. Pozar: “Microwave Engineering”, Ch. 1~ Ch. 4, (1995).
129. G. Fischerauer, T. Ebner, P. Kruck, K. Monozumi, R. Thomas, M. Pitschi: 2001 IEEE MTT-S Digest, 351 (2001).
130. R. Ruby, and P. Merchant: IEEE Frequency Control Symposium, 135 (1994).
131. J. F. Rosenbaum: “Bulk Acoustic Wave Theory and Devices”, Artech House (1988).
132. K. Hashimoto: “Surface Acoustic Wave Devices in Telecommunications”, Springer (2000).
133. US Patent 5910756.
134. K. M. Lakin, G. R. Kline, K. T. McCarron: “Development of miniature filters for wireless applications”, IEEE Trans. Micro. Theory and Technique 43, 2933 (1995).
135. C. K. Campbell: “Surface Acoustic Wave Devices for Mobile and Wireless Communication”, Academic Press (1998).
136. http://www.sumitomo.com
137. http://www.cascade.com
138. R. Ruby, P. Bradley, J. D. Larson III, and Y. Oshmyansky: “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs)”, Electronics Lett. 35, 794 (1999).
139. US 6262637 Patent.
140. http://www.airprime.com
141. http://www.samsung.com
142. Q. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore: “Thin-Film Bulk Acoustic Resonators and Filters Using ZnO and Lead-Zirconium-Titanate Thin Films”, IEEE T. Microw. Theory 49, 769 (2001).
143. A. Yamada, C. Maeda, T. Umemura, F. Uchikawa, K. Misu, S. Wadaka, and T. Ishikawa: “Preparation and piezoelectric property of lead titanate thin films for GHz-band resonators”, Jpn. J. Appl. Phys. 36, 6073 (1997).
144. A. Yamada, C. Maeda, F. Uchikawa, K. Misu, and T. Honma: “Piezoelectric properties of La-doped PbTiO3 films for RF resonators”, Jpn. J. Appl. Phys. 38, 5520 (1999).
145. S. Arscott, R. E. Miles, and S. J. Milne: “Lead zirconate titanate thin films for microwave device applications”, IEE Proc.-Circuits Devices Syst. 145, 373 (1998).
146. M. Schreiter, R. Gabl, D. Pitzer, R. Primig, and W. Wersing: “Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators”, J. Eur. Ceram. Soc. 24, 1589 (2004).
147. 李雨龍:”PZT 梯度鐵電薄膜之低溫製程與特性研究”,國立清華大學碩士論文(2000).
148. 梁振偉:”雷射剝鍍法製作BMT緩衝層及其對PZT薄膜之影響研究”,國立清華大學碩士論文(2003).
149. 李昆育:”以雷射剝離技術製備PNN-PZT鐵電厚膜於矽基板”,國立清華大學碩士論文(2003).
150. 李秀娟,國立清華大學碩士論文(2004).
151. 陳宜君:”利用全頻譜與掃描微探顯微術研究微波材料的介電機制”,國立師範大學博士論文(2003).
152. Y. Lu, T. Wei, F. Duewer, Y. Lu, N. B. Ming, P. G. Schultz and X. D. Xiang: “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope”, Science 276, 2004 (1997).
153. 高建綱:“光通訊平面光波導元件之設計與製程研究”,國立清華大學博士論文(2003).
154. B. H. Hoerman, G. M. Ford, L. D. Kaufmann and B. W. Wessels: “Dielectric properties of epitaxial BaTiO3 thin films”, Appl. Phys. Lett. 73, 2248 (1998).
155. P. Kr. Petrov, E. F. Carlsson, P. Larsson, M. Friesel and Z. G. Ivanov: “Improved SrTiO3 multilayers for microwave application: Growth and properties”, J. Appl. Phys. 84, 3134 (1998).
156. Y. A. Boikov and T. Claeson: “High tunability of the permittivity of YBa2Cu3O7-δ /SrTiO3 heterostructures on sapphire substrates”, J. Appl. Phys. 81, 3232 (1997).
157. X. Wang, U. F. Helmersson, S. Olafsson, S. Rudner, L. Wernlund and S. Gevorgian: “Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films”, Appl. Phys. Lett. 73, 927 (1998).
158. C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch and S. Trivedi: “Signal strength enhancement and bandwidth tuning in moving space charge field photodetectors using alternating bias field”, Appl. Phys. Lett. 72, 100 (1998).
159. E. Carlsson and S. Gevorgian: “Effect of enhanced current crowding in a CPW with a thin ferroelectric film”, Electron. Lett. 33, 145 (1997).
160. Y. K. Kim, K. M. Lee and H. M. Jang: “ 1:2 Long-range ordering and defect mechanism of WO3-doped perovskite Ba(Mg1/3Ta2/3)O3“, J. Mater. Sci. 35, 4885 (2000).
161. T. F.Tseng, K. S. Liu, T. B. Wu and I N. Lin: “ Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1-x)(ZryTi1-y)O3 thin films“, Appl. Phys. Lett. 68, 2505 (1996).
162. F. Duewer, C. Gao, I. Takeuchi and X. D. Xiang: “Tip-sample distance feedback control in a scanning evanescent microwave microscope”, Appl. Phys. Lett. 74, 2696 (1999).
163. C. T. Chia, Y. C. Chen and H. F. Cheng: “Correlation of microwave dielectric properties and normal vibration modes of x Ba(Mg1/3Ta2/3)O3–(1-x) Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys. 94, 3360 (2003).
164. K. S. Seol, S. Tomita, K. Takeuchi, T. Miyagawa, T. Katagiri, and Y. Ohki: “Gas-phase production of monodisperse lead zirconate titanate nanoparticles”, Appl. Phys. Lett. 81, 1893 (2002).
165. S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, and G. Cao: “Electrophoretic Growth of Lead Zirconate Titanate Nanorods”, Adv. Mater. 13, 1296 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊