跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏琮修
論文名稱:以溶膠-凝膠法製備鈦酸鋇薄膜作為氫離子感應場效電晶體之研究
論文名稱(外文):Hydrogen ion-sensitive field effect transistor with barium titanate membrane prepared by sol–gel technique
指導教授:陳建瑞陳建瑞引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:90
中文關鍵詞:氫離子感應場效電晶體鈦酸鋇溶膠凝膠法旋轉塗佈法
外文關鍵詞:Ion-sensitive field effect transistorsbarium titanatesol-gelspin-on coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離子感應場效應電晶體(Ion-sensitive field effect transistor ,ISFET)與傳統離子感測電極比較有許多優點。例如,尺寸小、外型堅固、響應快速、感測度高、低輸出阻抗、只需微量的待測容液即可量測、可以匹量生產、成本低以及應用面廣等等。其原理主要是以金屬-氧化物-半導體場效應電晶體(MOSFET)為基礎,將其金屬閘極去除後,使感測絕緣層直接與緩衝溶液接觸,藉由緩衝溶液中的待測離子與感測膜吸附產生界面電位,隨之發現界面電位會隨著溶液中的待測離子濃度產生變化,進而達到偵測溶液中待測離子濃度的目的。本論文係以溶膠-凝膠(Sol-Gel)法製備非晶形鈦酸鋇(BaTiO3)薄膜作為氫離子感應場效電晶體之感測閘極;將鈦酸鋇薄膜披覆在SiO2/p-Si(100)基板上以形成EIS結構,其中氧化層SiO2厚度為1000Å,並利用電容-電壓(C-V)量測以獲得平能帶電位(Flat band)偏移的現象。實驗結果發現,先驅液回流溫度為110℃,回流時間為4.5小時,而鈦酸鋇薄膜燒結溫度約340℃與厚度約1μm時可得到較佳感測特性,於pH=1∼11的範圍內其感測度為55.8 mV/pH。
Ion-sensitive field effect transistors (ISFET’s) have many advantages than the conventional ion selective electrode because of the small size of their sensitive area, robustness, rapid response, high sensitivity, low output impedance, low sample volumes, batch processing capability, low cost and the potential for on-chip circuit integration. The main part of an ISFET is the usual metal oxide silicon field effect transistor(MOSFET) with the gate electrode replaced by chemically sensitive membrane, electrolyte and a reference electrode (RE). Like in MOSFET, the channel resistance in ISFET depends on the electric field perpendicular to the direction of the current. Charges from solution accumulate on top of this insulating membrane and do not pass through the ion-sensitive membrane. Hence, the pH value of the solution can be detected by the ISFET. In this thesis, the barium titanate (BaTiO3) thin film was prepared by sol-gel method to be the sensor gate of ISFET. The barium titanate thin films were deposited on SiO2(1000Å)/p-Si substrates by spin-on coating method, and the EIS structure was obtained. The flat-band voltage(ΔVBF) can be shifted by C-V measurement. The optimum conditions were found that the fluxing temperature was 110℃ and fluxing time was 4.5 hours, and firing temperature was about 340℃ and thin film thickness was about 1μm, and the sensitivity of 55.8 mV/pH in the range of pH1~pH11 can be obtained.
[1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Bio- Medical Engineering, (1970) 70-71.
[2] 吳朗,感測與轉換原理、元件與應用,三版,全欣資訊,民國82年 385-387
[3] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第1期(1990) 57∼62。
[4] 眭曉林,固態化學感測元件之積體化設計,材料與社會,第60期 (1991) 56~61
[5] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, Int. J. Electronic, vol. 67, NO1, (1989) 59-63.
[6] L.Bousse, H. H van der Vlekkert and N. F. de Rooij, Hysteresis in Al2O3-gate ISFETs, Sensors and Actuators B, 2 (1990) 103-110.
[7] H. Van Den Vlekkert, L. Bousse and N. de Rooij, The Temperature dependence of the durface potential at the Al2O3/electrolyte interface, J. Colloid Interface Sci., vol. 122 (1988) 336-345.

[8] L.Bousse, S. Mostarshed, B. van der Schoot and N. F. de Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B, 17 (1994) 157-164.

[9] D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, Ionsensing devices with silicon nitride and borosilicate glass insulators, IEEE Trans. Electron Devices, vol. ED-34 (1987) 1700-1707.

[10] P.Gimmel, B. Gompf, D. Schmeisser, H.D. Wiemhofer, W. Gopel and M. Klein, Ta2O5-gates of pH-sensitive devices: comparative spectroscopic and electrical studies, Sensors and Actuators, 17(1989) 195-202.
[11] D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET, Sensors and Actuators B 34 (1996) 441-445.
[12] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. I, 70 (1974) 1807-1818.

[13] Koch S, Woias P, Meixner LK, Drost S, Wolf H. Protein detection with a novel ISFET-based zeta potential analyzer. Biosens Bioelectron 1999;14:417– 25.

[14] Baumann WH, Lehmann M, Schwinde A, Ehret R, Brischwein M, Wolf B. Microelectronic sensor system for microphysiological application on living cells. Sens Actuators, B 1999;55:77 – 89.

[15] Offenha¨usser A, Knoll W. Cell-transistor hybrid systems and their potential applications. Trends Biotech 2001;19(2):62 – 5.

[16] Poghossian A, Lu¨th H, Schultze JW, Scho¨ning MJ. (Bio-)chemical and physical microsensor arrays using an identical transducer principle. Electrochimica 2001;47:243– 9.

[17] Sprenkels A, Pijanowska D, van der Linden H, Olthuis W, Bergveld P. The comprehensive integration of microdialysis membranes with silicon sensors. http://www.bios.el.utwente.nl, 2003.

[18] Poghossian A, Lu¨th H, Schultze JW, Scho¨ning MJ. (Bio-)chemical and physical microsensor arrays using an identical transducer principle. Electrochimica 2001;47:243– 9.
[19] Journal of Biotechnology in Berlin-Brandenburg,15(2002)
[20] Vianello F, Stefani A, Dipaolo ML, Rigo A, Lui A, Margesin B, et al. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens Actuators, B 1996;37:49 – 54. (酵素)
[21] Dzyadevich SV, Korpan YI, Arkhipova VN, Alesina MY, Martelet C, El’Skaya AV, et al. Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosens Bioelectron 1999;14:183–7.(血液中ㄉ葡萄糖)
[22] Senillou A, Jaffrezic-Renault N, Martelet C, Cosnier S. A miniaturized urea sensor based on the integration of both ammonium based urea ENFET and a reference FET in a single chip. Talanta 1999;50(1):219– 26.
[23] Sibbald A. Recent advances in field-effect chemical microsensors. J Mol Electron 1986;2:51– 83.
[24] Kharitonov AB, Zayats M, Lichtenstein A, Katz E, Willner I. Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens Actuators, B 2000;70:222– 31.(酵素)
[25] Koch S, Woias P, Meixner LK, Drost S, Wolf H. Protein detection with a novel ISFET-based zeta potential analyzer. Biosens Bioelectron 1999;14:417– 25
[26] Van Kerkhof JC, Bergveld P, Schasfoort RBM. The ISFET based heparin sensor with a monolayer of protamine as affinity ligand. Biosens Bioelectron 1995;10:269–82.
[27] Guo L, Krauss PR, Chou SY. Nanoscale silicon field effect transistors fabricated using imprint lithography. Appl Phys Lett 1997;71(13):1881– 3.
[28] Hong Xiao, Introduction to Semiconductor Manufacturing Technology ,69~71
[29] S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985).
[30] Thomas J. Mego, Guidelines for Interpreting CV Data, Solid State Technology, May, (1990) 159-163.
[31] 電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 2002
[32] Clifford D. Fung, Peter W. Cheung, and Wen H. Ko, A Generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices, Vol. ED-33, No.1 (1986) 8~18.
[33] Van den Berg A, Bergveld P, Reinhoudt DN, Sudholter EJR. Sensitivity control of ISFETs by chemical surface modification. Sens Actuators 1985; 8:129–35.
[34] P. Bergveld and A. Sibbald, Analytical and biomedical application of ion-selective field-effect transistors, chapter 2. 3, Elsevier Science Publishing Company Inc., New York, America (1988).
[35] Wong, Anthony Sai-Hung, Theoretical and experimental studies of CVD aluminum oxide as A pH sensitive dielectric for the back contacts ISFET, ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May (1985)

[36] J. J. Ebelmen, Amm., Vol. 57, p. 331, (1846).
[37] T. Graham, Journal of Chemistry Society, Vol. 17, p. 318-327, (1864).
[38] 周禮君,田珮,「有機矽烷氧基物前驅物衍生的有機-無機混合成溶凝膠材料」,化工技術,第八卷第五期,152-164頁,2000年五月
[39] 丁原傑,無機有機混合成溶凝膠配製與應用,化工,第46卷第五期,63-71頁,1999年10月
[40] 〔1〕 L. Royleigh, Philos. Mag.,38,738, (1919).
[41] W. Geffcken and E. Berger, German Patent, 736411, (1939).
[42] 〔2〕 M. Vandenoever, T. Peijs, “Continuous-Glass-Fiber- Reinforced Polypropylene Composites - II - Influence of Maleic-Anhydride Modified Polypropylene on Fatigue Behavior”, Composites Part A - Applied Science and Manufacturing, 29,. 3, p. 227-239, (1998).
[43] C. B. Hurd, “Theories for the Mechanism of the Setting of Silicic Acid Gels”, Chemistry Review, Vol. 22, p. 403-422, (1938).
[44] 〔3〕 R. Roy, J. Am. Ceram. Soc., 52,334 (1969).
[45] R. K. Iler, The Chemistry of Silica, Wiley-Inter Science, (1955).
[46] L. Levene and I. M. Thomas, U. S. Patent 3,640,093, (1972).
[47] 〔4〕 H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie, 10, 6, p. 363-370, (1971).
[48] 〔5〕 B. E. Yoldas, “Preparation of Glasses and Ceramics from Metal-organic Compounds”, J. Mater. Sci., Vol. 12, p. 1203-1208, (1977).
[49] R.D.Klissurska,T.Maeder, K.G.Brooks and N.Setter, “Microstructure of PZT sol-gel films on Pt substrates with different adhesion layers”, Microelectronic Engineering ,vol.29,pp.297-300,(1995)
[50] 〔6〕 S.Wallington,T.Labayen,A.Poppe,N.Sommerdijk and J.D.Wright, “Sol-gel entrapped materials for optical sensing of solvents and metal ions”,Sensors and Actuators B,vol.38-39,pp.48-52,(1997)
[51] T.Ishiwaki,H.Inoue, and A.Makishima, “Optical properties of 1,4-dihydroxyanthraquinone covalently bonded to SiO2-AlO3/2 gel”,J.Non-Cryst.Solids,vol.203,pp.43-48,(1996)
[52] A.K.Mcevoy,C.Mcdonagh and B.D.MacCraith, “Optimisation of sol-gel-derived silica films for optical oxygen sensing”,J.Sol-Gel Sce.&Tech.,vol.8,pp.1121-1125,(1997)
[53] K.Matsuura,S.Machida and K.Horie, “High-temperature spectral hole burning for organic-inorganic hybrid systems : porphyrin derivative-doped alumina gels prepared by a sol-gel method” J.Non-Cryst.Solids,vol.217,pp.136-142,(1997)
[54] L.Sieminska,M.Ferguson,T.W.Zerda and E.Couch, “Diffusion of steroids in porous sol-gel glass : application in slow drug delivery” ,J.Sol-Gel Sce& Tech.,vol.8,pp.1105-1109,(1997)
[55] S.A.Grant and R.S. Glass, “A sol-gel based fiber optic sensor for local blood pH measurements” ,Sensors and Actuators B, vol.45,pp. 35-42,(1977)
[56] C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, (1990).
[57] B. Jirgensons and M. E. Straumanis:Coloid Chemistry, MvMillan
Co., New York, 1962.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top