跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂正傑
研究生(外文):Ching-Chich Leu
論文名稱:黏著層對鉭酸鍶鉍鐵電記憶體顯微結構與特性之影響
論文名稱(外文):Effects of adhesion layers on the microstructure and characteristics of SrBi2Ta2O9 ferroelectric memories
指導教授:胡塵滌胡塵滌引用關係
指導教授(外文):Chen-Ti Hu
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:105
中文關鍵詞:鉭酸鍶鉍鐵電材料掃描式電容顯微鏡
外文關鍵詞:SrBi2Ta2O9FerroelectricScanning Capacitance Microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文第一部份之內容,在於探討鈦(Ti)以及鉭(Ta)黏著層,對以有機金屬法鍍製之鉭酸鍶鉍(SrBi2Ta2O9, SBT)薄膜的鐵電特性及微結構的影響;結果發現,黏著層對於鉭酸鍶鉍薄膜的最終微結構與物理特性,扮演著重要的角色。黏著層原子(包括鈦及鉭)在750℃、1分鐘熱處理條件下,皆會往外擴散至鉑(Pt)下電極的表面,且鈦原子的擴散速率大於鉭原子。由表面分析以及極化-電場(P-E)量測結果得知,擴散至下電極表面之鈦及鉭原子,造成了位於下電極上方之鉭酸鍶鉍薄膜顯微結構和極化特性的差異。此外,利用穿透式電子顯微鏡分析,觀察到一層薄且具奈米尺寸晶粒的鉑金屬介面層,形成於鉭酸鍶鉍與鉑下電極之間。能量散佈光譜儀的分析結果指出,有大量的氧化鈦形成於這層奈米晶粒鉑金屬層的晶界,這個現象與試片在氧氣氛下熱處理,促使鈦、氧沿晶界擴散有關。鉑電極結構的改變,據推論與氧化鈦的形成有關;氧化鈦形成會造成大量的體積膨脹,並使鉑電極承受應力,這應力即是奈米晶粒鉑金屬層產生的推力。此外,形成於奈米晶粒鉑層與鉑下電極介面的氧化鈦,會導致鉑電極結構的劣化,它可能造成鉭酸鍶鉍薄膜的剝落,進而影響鐵電電容特性。因此,以鉭金屬作為鉭酸鍶鉍電容的黏著層,應是較佳的選擇。
在鐵電材料中,鐵電薄膜的巨觀特性,如:切換、遲滯、壓電特性與電光效應等,都與微觀的鐵電域結構有關;因此為求瞭解這些鐵電材料的特性,觀察鐵電域結構與行為就顯得十分重要。在本論文的第二部份,利用掃描式電容顯微鏡(Scanning Capacitance Microscopy, SCM) ,觀察鉭酸鍶鉍薄膜因極化所造成的微觀結構。由於鐵電域不同的極性分佈,使得奈米尺寸的鐵電域表現出明顯的微分電容影像對比,鉭酸鍶鉍薄膜的鐵電域結構因此可被顯像。此外,即使鉭酸鍶鉍薄膜觀察表面覆蓋一層薄二氧化矽層,仍可得到影像對比,證實掃描電容影像來自於鉭酸鍶鉍本身的性質,而不是鉭酸鍶鉍表面特性。若針對大晶粒區域,改變外加直流電壓作正反兩次定點的微分電容訊號掃描,結果顯示了遲滯現象,並且在外加電壓零伏特時表現出相反極性。再將此微分電容訊號積分,可得一電容-電壓曲線,而且與巨觀特性相似。據此,可以歸納出掃描電容影像中白與黑的對比,來自於互相平行卻方向相反的鐵電域,而灰色對比則是無掃描電容訊號。這個結果顯示,微區的微分電容變化與奈米尺寸鐵電域的極性,可以有很好的對照關係。另一方面,實驗中也觀察到光照射對於掃描電容訊號的影響。原子力顯微鏡本身的雷射光照射,不僅影響了微分電容訊號,而且亦改變了鐵電材料的切換特性。這個現象可歸因於:在光照射下鉭酸鍶鉍薄膜吸收部分光能量,並在位於薄膜中缺陷的幫助下產生了自由電子,進而干擾了微分電容訊號。這個結果建議,若在光照射下,使用對電場敏感的掃描探針顯微儀器量測鐵電材料特性,則光效應的影響需要納入考慮。
The effects of titanium (Ti) or tantalum (Ta) adhesion layer on the ferroelectric and microstructural properties of metal-organic decomposition (MOD)-derived SrBi2Ta2O9 (SBT) films are investigated. It is found that the atoms of adhesion layer play a significant role on the resultant microstructures and physical properties of SBT films. Either the Ti or the Ta atoms of adhesion layer have the out-diffused behavior onto the surface of bottom-electrode Pt films after a thermal treatment of 750°C, 1min. However, the diffusion of Ti atom is much faster than Ta. Various out-diffused species do cause the distinct properties of SBT films, which are confirmed with the results of surface analysis and P-E measurements. By employing transmission electron microscopy (TEM), a thin nanocrystalline Pt (nano-Pt) interfacial layer was unexpectedly observed in the SBT/Pt interface region. The energy-dispersive spectrometer (EDS) analyses indicated a great amount of TiOx formed along the grain boundaries of this nanocrystalline layer. This phenomenon is strongly related to the grain-boundary diffusions of O and Ti atoms during the annealing process in oxygen ambient. It is speculated that the structural reconstruction of the Pt electrode was likely triggered by the induced stress due to the large volume expansion as the formation of TiOx. Meantime, the emergence of TiOx in nano-Pt/columnar-Pt interfacial regions would significantly deteriorate the integrality of Pt electrode, it possibly causes the peeling of SBT layer and poses a serious problem to the performance of the ferroelectric capacitors. Therefore, the employment of Ta element for the adhesion layer in SBT capacitor is more favorable.
In ferroelectrics, the macroscopic properties of thin films, such as switching behavior, hysteresis, piezoelectricity and electro-optical effects, are intimately related to the microscopic domain structures. Hence, it is of paramount importance to have an insight into the structure and behavior of domains in order to better understand the characteristics of ferroelectric thin films. In the second section of this thesis, the scanning capacitance microscopy (SCM) was employed to investigate the polarization-induced micro-structural images from the MOD processed SrBi2Ta2O9 (SBT) thin films. A sharp image contrast had been induced between the nano size domains owing to the various polarities, so that the domain structure in a SBT thin film was clearly revealed. The contrast mechanism of the SCM to exhibit the ferroelectric domain structures was demonstrated. A parallel examination on the oxide-passivated SBT films verified that the SCM images truly came from the intrinsic capacitors characteristics rather than the surface properties of SBT. The two-way differential capacitance scanning over a large grain showed a hysteresis loop depicting the opposing polarities at zero bias. Subsequently the hysteretic C-V curves, as the characteristic of domain switching, were acquired by integrating the calibrated differentiation capacitance. Therefore, it is concluded that the white and black contrast in SCM images are due to the anti-parallel 180o domains whereas the gray contrast is owing to the trivial differential capacitance variation. These results strongly suggest that the local capacitance variation can be correlated very well with the polarities of polarizations in nano-scale domains. On the other hand, the impact of an illumination on the differential capacitance variation of a SBT capacitor is observed. It is found that the illumination on samples by a stray light of laser in the atomic force microscopy (AFM) can not only perturbs the dC/dV signals but also affects the switching properties of the ferroelectrics. We attribute this phenomenon to the generation of free carriers by the photon absorptions via the defect traps in a SBT thin film. As a consequence, it is suggests that the laser illumination effect shall be carefully considered whenever a field-sensitive technique is employed to analyze the properties of a ferroelectric material.
Abstract i
Acknowledgement iii
Table of contents iv
Table captions vii
Figure captions viii
Abbreviations xvi

1. Introduction 1
1.1 Effects of Ti and Ta adhesion layers on the properties of ferroelectric memories 1
1.1.1 General background 1
1.1.2 Motivation of this study 2
1.2 Investigation of local characteristics and domain structures in ferroelectric thin films 2
1.2.1 General background 2
1.2.2 Motivation of this study 3
1.3 Organization of this thesis 3

2. Literature review 5
2.1 Strontium Bismuth Tantalate (SBT) thin film. 5
2.1.1 Why SBT? 5
2.1.2 Crystal structure and macroscopic properties of SBT. 7
2.1.3 Ferroelectric domains 9
2.2 Titanium adhesion layer for ferroelectric memory 10
2.3 Ferroelectric domain visualization methods 13

3. Effects of Ti and Ta adhesion layers on the properties of ferroelectric memories 29
3.1 Experimental 29
3.1.1 Film preparation 29
3.1.2 Film characterization 30
3.2 Result and discussion 30
3.2.1 Microstructures and ferroelectric properties of SBT capacitors with Ti and Ta adhesion layers 30
3.2.1.1 Characteristics of Pt/Ti and Pt/Ta bottom electrodes 30
3.2.1.2 Crystallization structure and surface morphology of SBT thin films 32
3.2.1.3 Ferroelectric properties 34
3.2.1.4 The effects of out-diffused Ti and Ta atoms 35
3.2.1.5 Summary 37
3.2.2 TEM analysis of SBT capacitors 38
3.2.2.1 SBT capacitors 38
3.2.2.2 The microstructure of SBT film 39
3.2.2.3 SBT/Pt interface 40
3.2.2.4 The structure of Pt layer 41
3.2.2.5 Nano-crystalline Pt layer 42
3.2.2.6 Stress induced formation of the nano-Pt layer 44
3.2.2.7 Summary 48
3.3 Summary 48

4. Investigation of local characteristics and domain structures in ferroelectric thin films 72
4.1 Experimental 72
4.2 Result and discussion 73
4.2.1 Domain structure study of SBT by scanning capacitance microscopy (SCM) 73
4.2.1.1 Macroscopic CV curve of SBT 73
4.2.1.2 Voltage-induced domain patterns 73
4.2.1.3 Domain structure acquired under bias 75
4.2.1.4 Summary 76
4.2.2 Contrast mechanism of ferroelectric domains in SCM 77
4.2.2.1 Domain structure in virgin SBT 77
4.2.2.2 local characteristics in SBT 78
4.2.2.3 Nano-size domain 81
4.2.2.4 Summary 83
4.2.3 Photoperturbation-induced differential capacitance variations in SBT thin films 83
4.2.3.1 The effect of AFM laser on SCM 83
4.2.3.2 The effect of green laser on SCM 84
4.2.3.3 The laser effect on switching properties of SBT 85
4.2.3.4 Summary 86
4.3 Summary 86
5. Conclusions 101

6. Suggests for future work 103

Appendix: A mechanism for the reconstruction of nano-Pt layer in SBT/Pt/Ti/SiO2/Si A1
References R1
1C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, 627 (1995).
2H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello, and A. I. Kingon, Integrated Ferroelectrics 3, 321 (1993).
3S. T. Kim, H. H. Kim, M. Y. Lee, and W. J. Lee, Jpn. J. Appl. Phps. Part 1 36, 294 (1997).
4H. J. Nam, H. H. Kim, and W. J. Lee, Jpn. J. Appl. Phps. Part 1 37, 3462 (1998).
5H. J. Nam, D. K. Choi, and W. J. Lee, Thin Solid Films 371, 264 (2000).
6S. H. Kim, D. J. Kim, J. P. Maria, A. I. Kingon, S. K. Streiffer, J. Im, O. Auciello, and A. R. Krauss, Appl. Phys. Ltter. 76, 496 (2000).
7N. J. Seong, C. H. Yang, W. C. Shin, and S. G. Yoon, Appl. Phys. Ltter. 72, 1374 (1998).
8C. H. Lu, and B. K. Fang, J. Mater. Res. 12, 2104 (1997).
9C. H. Lu, B. K. Fang, and C. Y. Wen, Jpn. J. Appl. Phys. Part 1 39, 5573 (2000).
10K. Hholloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, J. Appl. Phys. 71, 5433 (1992).
11A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, J. Mater. Res., 7, 3260 (1992).
12D. S. Yoon, H. K. Baik, S. M. Lee, S. I. Lee H. Ryu, and H. J. Lee, J. Vac. Sci. Technol. B, 16, 1137 (1998).
13W. J. Merz, Phys. Rev. 95, 690 (1954).
14F. Gilletta, Phys. Status Solidi 11, 721 (1955).
15V. P. Konstantinova, N. A. Tichomirova, and M. Glogarova, Ferroelectrics 20, 259 (1978).
16S. Zhu and W. Cao, Phys. Rev. Lett. 79, 2558 (1997).
17F. Saurenbach and B. D. Terris, Appl. Phys. Lett. 56, 1703 (1990).
18T. Yamatomo, J. Sakamoto, E. Matuzaki and R. Takayama, Jpn. J. Appl. Phys. 38, 5332 (1999).
19Y. Cho, S. Atsumi and K. Nakamura, Jpn. J. Appl. Phys. 36, 3152, (1997).
20A. Gruverman, O. Auciello, H. Tokumoto, J. Vac. Sci. Technol. B 14, 602 (1996).
21M. N. Chang, C. Y. Chen, F. M. Pan, T. Y. Chang, and T. F. Lei, Electrochem Solid-State Lett., 5, G69 (2002).
22P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 2247 (1998).
23J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989).
24E.L. Colla, A.K. Tagantsev, D.V. Taylor, and A.L. Kholkin, Integr. Ferroel. 18, 19 (1997).
25M. Grossmann, D. Bolten, O. Lohse, U. Boettger, R. Waser, and S. Tiedke, Appl. Phys Lett. 77, 1894 (2000).
26J.M. Bell, P.C. Knight, and G.R. Johnston, page 93 in: Ferroelectricity and related phenomena,Vol. 10 (Integrated ferroelectric devices and technologies). Part 1: Ferroelectric thin films: synthesis and basic properties. Eds. C. Paz de Araujo, J. F. Scott, and G.W. Taylor. Gordon and Breach, Amsterdam 1996.
27C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature 374, 627 (1995).
28P.C. Fazan, Integr. Ferroelectr. 4, 247 (1994).
29H.N. Lee, Y.T. Kim, and S.H. Choh, Ferroelectr. 197, 733 (1997).
30R. Ramesh, A. Inam, W.K. Chan, B. Wilkens, K. Myers, K. Remschnig, D.L. Hart, and J.M. Tarascon, Science 252, 944 (1991).
31H. S. Nalwa, Handbook of Thin Film Materials 3: Ferroelectric and Dielectric Thin Films (Academic, San Diego, 2002).
32O. Auciello, Integ. Ferroelec. 15, 211 (1997).
33V. Ya. Shur, N. Yu. Ponomarev, N.A. Tonkacheva, S.D. Makarov, E.V. Nikolaeva, E.I. Shishkin, L.A. Suslov, N.N. Salashchenko, and E.B. Klyuenkov, Phys. Solid State 39, 609 (1997).
34Q.Y. Jiang, E.C. Subbarao, and L.E. Cross, J. Appl. Phys. 75, 7433 (1994).
35J. J. Lee, C.L. Thio, and S.B. Desu, Physica Status Solidi A 151, 171 (1995).
36B. Aurivillius, Arkiv Kemi 1, 463 (1949)
37G. A. Smolenskii, V.A. Isupov, A. I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961).
38E. C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962).
39E.C. Subbarao, Phys. Rev. 122, 804 (1961).
40L.G. Van Uitert and L. Egerton, J. Appl. Phys. 32, 959 (1961).
41R.E. Newnham, R.W. Wolfe, R.S. Horsey, F.A. Diaz-Colon, and M.I. Kay, Mater. Res. Bull. 8, 1183 (1973).
42Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phys. Lett. 74, 1904 (1999).
43O. Auciello, J. F. Scott and R. Ramesh, Physics Today July, 32 (1998).
44H. Tabata, T. Yanagita, and T. Kawai, IEICE Trans. Electron. E81-C, 566 (1998).
45S.K. Kim , M. Miyayama, and H. Yanagida, J. Ceram. Soc. Japan 102, 722 (1994).
46M. Tachiki, K. Yamamuro, and T. Kobayashi, Mater. Sci. Eng. B 41, 131 (1996).
47T. Takenaka, K. Sakata, and K. Toda, Jpn. J. Appl. Phys. 24, 730 (1985).
48J. Fousek and V. Janovec, J. Appl. Phys. 40, 135 (1969).
49C. Harnagea, Ph.D. thesis: local piezoelectric response and domain structures in ferroelectric thin films investigated by voltage-modulated force microscopy (2000).
50C. A. Araujo, L. D. McMillan, B. M. Melnick, J. D. Cuchiaro and J. F. Scott, Ferroelectrics 104, 241 (1990).
51T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi and Y. Miyasaka, Appl. Phys. Lett. 57, 2431 (1990).
52R. E. Jones, P. D. Maniar, J. O. Olowolafe, Jr., A. C. Campbell and C. J. Mogab, Appl. Phys. Lett. 60, 1022 (1992).
53K. H. Park, C. Y. Kim, Y. W. Jeong, H. J. Kwon and K. Y. Kim, J. Mater. Res. 10, 1790 (1995).
54K. Sreenivas, J. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman, J. Appl. Phys. 75, 232 (1994).
55R. M. Walton, H. Liu, J. L. Gland and J. W. Schwank, Actuators B 41, 143 (1997).
56S. L. Firebaugh, K. F. Jensen and M. A. Schmidt, J. Microelectromechanical systems 7, 128 (1998).
57C. Pliangos, I. V. Yentekakis, S. Ladas and C. G. Vayenas, J. Catal. 159, 189 (1996).
58J. O. Olowolafe, R. E. Jones, Jr., A. C. Campbell, R. I. Hegde and C. J. Mogab, J. Appl. Phys. 73, 1764 (1993).
59S. Y. Kweon, S. K. Choi, S. J. Yeon and J. S. Roh, Jpn. J. Appl. Phps. 40, 5850, (2001).
60W. W. Jung, S. K. Choi, S. Y. Kweon and S. J. Yeom, Appl. Phys. Ltter. 83, 2160 (2003).
61G. K. H. Pang and K. Z. B. Kishi, J. Phys. D: Appl. Phys. 31, 2846 (1998).
62J. L. Giocondi and G. S. Rohrer, Mat. Res. Soc. Symp. Proc. 654, AA7.4.1 (2001).
63S. B. Ren, C. J. Lu, H. M. Shen, and Y. N. Wang, Phys. Rev. B 54, R14 337 (1996).
64J. W. Hong, K. H. Noh, S.I. Park, S. I. Kwun and Z. G. Khim, Phys. Rev. B 58, R15 5078 (1998).
65Y. Cho, S. Kazuta and K. Matsuura, Appl. Phys. Ltter. 75, 2833 (1999).
66C. Harnagea, A. Pignolet, M. Alexe, D. Hesse and U. Gosele, Appl. Phys. A 70, 261 (2000).
67D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).
68S. S. Park, C. H. Yang, and S. G. Yoon, J. Electrochem. Soc. 144, 2855 (1997).
69K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, Jpn. J. Appl. Phys., Part 1 34, 192 (1995).
70I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M. Maeda, Jpn. J. Appl. Phys. Part 1 35, 4946 (1996).
71T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, Jpn. J. Appl. Phys. Part 1 37, 597 (1998).
72P. Tejedor, C. Ocal, E. Barrena, R. Jimenez, C. Alemany, and J. Mendiola, Appl. Surf. Sci. 175,759 (2001).
73S. T. Tay, H. Jiang, C. H. A. Huan, A. T. S. Wee, and R. Liu, J. Appl. Phys. 88, 5928 (2000).
74S. B. Desu, D. P. Vijay, X. Zhang, and B. P. He, Appl. Phys. Lett. 69, 1719 (1996).
75G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick, and C. Mazure, Integrated Ferroelectrics 17, 421 (1997).
76R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoseler, Mater. Res. Soc. Symp. Proc. 243, 123 (1992).
77O. Auciello, A. R. Krauss, J. Im, and J. A. Schultz, Annu. Rev. Mater. Sci. 28, 375 (1998).
78S. B. Ren, C. J. Lu, H. M. Shen, and Y. N. Wang, Phys. Rev. B 55, 3485 (1997).
79T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-shareef, B. Scott and J. W. Ziller, J. Mater. Res. 11, 2274 (1996).
80M. A. Rodriguez, T. J. Boyle, B. A. Hernandez, C. D. Buchheit, M. O. Eatough, J. Mater. Res. 11, 2282 (1996).
81J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, S. J. Hyun and T. W. Noh, Appl. Phys. Lett. 74, 2690 (1999).
82Metal Handbook, Alloy Phase Diagram Vol. 3, pp. 2-348 (ASM International, USA, 1992).
83Robert E. Reed-Hill, Physical Metallurgy Principles (PWS-KENT Publishing Company, Boston, 1992).
84S. Y. Kweon, S. J. Yeon, H. J. Sun, N. K. Kim, Y. S. Yu and S. K. Lee, Integr. Ferroelectr. 25, 299 (1999).
85 B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm and L. A. Boatner, Phys. Rev. B 49, 14865 (1994).
86H. M. Choi, S. K. Choi, J. Vac. Sci. & Technol. A. 13, 2823 (1995).
87S. Y. Kweon, S. H. Yi, S. K. Choi, J. Vac. Sci. & Technol. A. 13, 57 (1997).
88S. Zafar, V. Kaushik, P. Laberge, P. Chu, R. E. Jones, R. L. Hance, P. Zurcher, B. E. White, D. Taylor, B. Melnick and S. Gillespie, J. Appl. Phys., 82, 4469 (1997).
89Charlie R. Brook, Heat treatment, structure and properties of nonferrous alloys (American Society for Metals, USA, 1982).
90G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampchoer, H. A. M. van Hal and P. K. Larsen, J. Appl. Phys. 70, 2290 (1991).
91C. Paz de Araujo, J. F. Scott and G. W. Taylor, Ferroelectric Thin Films: synthesis and basic properties (Golden and Breach Publishers, The Netherlands, 1996).
92A. Gruverman, O. Auciello, H. Tokumoto, J. Vac. Sci. Technol. B 14, 602 (1996).
93A. Gruverman, and Y. Ikeda, Jpn. J. Appl. Phys. 37, L939, (1998).
94T. Yamamoto, Y. Suzuki, M. Miyashita, H. Sugimura, N. Nakagiri, J. Vac. Sci. Technol. B 15, 1547 (1997).
95 J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).
96M. N. Chang, C. Y. Chen, and F. M. Pan, J. H. Lai, W. W. Wan, and J. H. Liang, Appl. Phys. Lett. 82, 3955 (2003).
97G. H. Buh, J. J. Kopanski, J. F. Marchiando, A. G. Birdwell and Y. Kuk, J. Appl. Phys. 94, 2680 (2003).
98R. Wolfe, Applied Solid State Science 4: Advanced in materials and device research (Academic, New York, 1974).
99A. S. Bhalla, E. M. Vogel, and K. M. Nair, Ceramic Transactions 14: Electro-Optics and Nonlinear Optic Materials (The American Ceramic Society, USA, 1990).
100D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, J. Appl. Phys. 76, 4305, (1994).
101H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren, and B. A. Tuttle, Appl. Phys. Lett. 68, 690 (1996).
102L. Pintilie, M. Alexe, I. Pintilie, and T. Botila, Appl. Phys. Lett. 69, 1571 (1996).
103H. S. Nalwa, Handbook of Thin Film Materials 3: Ferroelectric and Dielectric Thin Films (Academic, San Diego, 2002).
104P. Lehnen, J. Dec, and W. Kleemann, J. Phy. D: Appl. Phys 33, 1932 (2000).
105M. Muller, E. Soergel, and K. Buse, Appl. Phys. Lett. 83, 1824 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top