跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李秀娟
研究生(外文):Hsiu-Chuan Lee
論文名稱:KrF準分子雷射臨場退火製備PZT薄膜與奈米微粉添加影響之研究
論文名稱(外文):PZT thin film preparation by in-situ KrF excimer laser annealing and nano-powder seeding effect
指導教授:黃金花黃金花引用關係林諭男林諭男引用關係
指導教授(外文):Jin-Hua HuangI-Nan Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:鋯鈦酸鉛雷射退火奈米微粉添加
外文關鍵詞:PZTlaser annealingnano-powder seeding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以有機金屬裂解法(MOD)鍍製鋯鈦酸鉛(PbZr0.52Ti0.48O3)薄膜,利用KrF準分子雷射臨場(in-situ)退火,並輔以與薄膜同組成之PZT奈米微粉之添加,造成異質成核的效應,成功降低了PZT鈣鈦礦相形成之製程溫度。整個薄膜製程溫度降至400℃。實驗中以未添加微粉及利用鈦酸鋇(BaTiO3)奈米微粉作為孕核層之PZT薄膜作為對照。
利用PZT奈米微粉之添加與臨場雷射退火所製備之薄膜,在結晶繞射、微結構及電性表現上皆十分良好。與未添加微粉之薄膜相較,PZT奈米微粉之添加將薄膜整體之結晶性提高了四倍以上。微結構方面,經由臨場雷射退火後之薄膜,其表面粗糙度降低至3-7 nm。而在電性上的表現,於鉑基板上之PZT薄膜(約95 nm厚),其電滯曲線可達殘存極化值24.96 mC/cm,矯頑場229.2 kV/cm。
而本實驗中更成功地在矽基板上直接成長出具鈣鈦礦相之PZT薄膜(約95-190 nm),於現有文獻中十分罕見。且實驗中所得之PZT薄膜更在電容-電壓曲線中,具有高記憶窗(0.8V/95 nm之PZT薄膜,1.65V/190 nm之PZT薄膜),符合元件應用之要求。另外由橫截面之TEM分析,清楚地發現KrF雷射對於PZT薄膜的影響隨著穿透深度之變化。
參考文獻
1. G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., 82(4), pp. 797-818 (1999).
2. Y. Xu, “Ferroelectric Materials and Their Applications”, North-Holland: Elsevier Sci. Pub., New York, p.10 (1991).
3. S. –M. Koo, “Ferroelectric Thin Film Multilayers by Pulsed Laser Deposition”, Licentiate Thesis, Royal Institute of Technology, Stockholm (1999).
4. William D. Callister, Jr., “Materials Science and Engineering”, John Wiley & Sons Inc., 3th, Canada (1994).
5. 林諭男, “鐵電薄膜電容特性與機制”,材料會訊,第4卷,第3期,pp.50-54 (1996)。
6. B. Jaffe, W. R. C. Jr and H. Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London (1971).
7. B. Jaffe, R. S. Roth, and S. Marzullo, “Piezpelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics”, J. Appl. Phys., 25(6), pp.809-810 (1954).
8. A. Wu, P. M. Vilarinho, I. M. Miranda Salvado, and J. L. Baptista, “Seeding Studies in PZT Thin Films”, Mater. Res. Bulletin, 33(1), pp. 59-68 (1998).
9. D. A. Barrow, T. E. Petroff, R.P. Tandon, and M. sayer, “Characterization of Thick Lead Zirconate Titanate Films Fabricated Using a New Sol-gel Based Process”, J. Appl. Phys., 81(2), p.876 (1997).
10. C. Jeffrey Brinker and George W. Scherer, “Sol-Gel Science” Academic Press Inc., pp. 2-18 (1990).
11. C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. “Chemical Modification of Alkoxide Precursors” Non-Cryst. Solids, 100, p.65 (1988).
12. E. A. Barringer and H. K. Bowen, “Formation, Packing and Sintering of Monodisperse TiO2 Powders”, J. Am. Ceram. Soc., 11(12), pp.199-201 (1982).
13. J. H. Jean and T. A. Ring, “Processing Monosized TiO2 Powders Generated with HPC Dispersant”, Ceramic Bulletin, 65(12), p.1574 (1986).
14. A. B. Hardy, G. Gowda, T. J. McMahon, R. E. Neman, H. K. Bowen, “Ultrastructure Processing of Advanced Ceramics”, Wiley, pp.407-428, New York (1987).
15. Ogiwara, H. Kanako, N. Mizutani and M. kato, J. Mater. Sci. Lett. 7, p.867 (1988).
16. G. M. Vest and S. Singaram, “Synthesis of Metallo-Organic Compounds for MOD Powders and Films”, Mat. Res. Soc. Symp. Proc., 50, p.35 (1986)
17. G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampschoer, H. A. M. van Hal and P. K. Larsen, “Preparation and Ferroelectric Properties of PbZr0.53Ti0.47O3 Thin Films by Spin Coating and Matalorganic Decomposition”, J. Appl. Phys., 70, p.2290 (1991)
18. E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayazitv, “ Local Laser Annealing of Implantation Doped Semiconductor Layers”, Sov. Phys. Semicond., 19(10), pp. 1309-1310 (1976).
19. I. B. Khaibullin, E. I. Shtyrkov, M. M. Zaripov, M. F. Galyautdinov, and G. G. Zakirov, “Utilization Coefficient of Implanted Impurities in Silicon Layers Subjected to Subsequent Laser Annealing”, Sov. Phys. Semicond., 11(2), pp.190-192 (1977).
20. M. Poate and James W. Mayer, “Laser Annealing of Semiconductors” Academic, New York, p.1 (1982).
21. 周嘉峰, “雷射退火低溫製備鈦鋯酸鉛薄膜之研究”,國立台灣科技大學碩士論文,中華民國九十年。
22. 許獻文, “準分子雷射退火之低溫高介電常數鈦酸鍶鋇薄膜BaxSr1-xTiO3於動態隨機存取記憶體電容器之研究”,交通大學碩士論文,中華民國八十九年六月。
23. H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High Perfermance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., 30, pp.3700-3703 (1991).
24. B. G. Bagley, and H. S. Chen, “Laser-Solid Interactions and Laser Processing”, Am. Inst. Phys., New York, p.97 (1979).
25. M. Bertolotti, “Physical Processes in Laser-Materials Interactions”, Plenum Press, New York, p.190 (1983).
26. D. Turnbull (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), “Solid state physics” Academic, New York, 3, p.225 (1956).
27. D. Turnbull and B. Chalmers, “Progress in materials science”, Pergamon Press, p.269 (1981).
28. N. H. Nickel et al., “ Grain-Boundary defects in Laser Crystallized Polycrystalline Silicon”, Phys. Rev. B, 56(9), pp. 65-68 (1997).
29. H. Watanabe, H. Miki, S. Sugai, K. Kawasaki, and T. Kioka, “Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing”, Jpn. J. Appl. Phys., 33(8), Part 1, pp. 4491-4498 (1994).
30. H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., 30(12B), pp. 3700-3703 (1991).
31. H. Kuriyama, T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. T. and S. Nakano, “Lateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method”, Jpn. J. Appl. Phys., 32(12B), part1, pp. 6190-6195 (1993).
32. 張所鋐, “微機電壓電薄膜製程與應用”,機械月刊,第292期(2000)。
33. 林諭男, “強介電陶瓷薄膜的應用”,工業材料107,p.49 (1995)。
34. L. H. Parker and A. F. Tasch, IEEE Circuit and Device Magazine p.17 (1990).
35. J. F. Scott, C. A. P. de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics, 133, p.47 (1992).
36. A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman & Hall, New York (1990).
37. R. W. Vest, “Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electrooptic Films: A Review”, Ferroelectrics, 102, pp.53-68 (1990).
38. M. Liu, H. K. Kim and J. Blachere, “ Lead-Zirconate-Titanate-based Metal/ Ferroelectric/ Insulator/ Semiconductor Structure for Nonvolatile Memories”, J. Appl. Phys. 91(9), p.5985 (2002).
39. K. W. Lee and W. J. Lee, “Relaxation of Remanent Polarization in Pb(Zr,Ti)O3 Thin Film Capacitors”, Jpn. J. Appl. Phys., Part1, 41(11B), pp.6718-6723 (2002).
40. X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin and Y. N. Wang, “Laser-Induced Phase Transformation from Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films With the Substrate at Room Temperature”, Appl. Phys. Lett. 65(16), pp.2015 (1994).
41. X. M. Lu, J. S. Zhu, W. S. Hu, Z. G. Liu and Y. N. Wang, “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 Amorphous Films”, Appl. Phys. Lett. 66(19), pp. 2481 (1995).
42. S. B. Xiong, Z. M. Ye, J. M. Liu, A. D. Li, C. Y. Lin, X. Y. Chen, X. L. Guo and Z. G. Liu, “Crystallization of Amorphous Lead Titanate Thin Films by the Irradiation of KrF Excimer Laser”, Applied Surface Science, 109/110, pp.124-127 (1997).
43. M. Knite, G. Mezinskis, L. Shebanovs, I. Pedaja and A. Sternbergs, “CO2 Laser-induced Structure Changes in Lead Zirconate Titanate Pb(Zr0.52Ti0.48)O3 Sol-gel Films”, Applied Surface Science, 208-209, pp.378-381 (2003).
44. H. Fujita, S. Goto, M. Sakashita, H. Ikesa, A. Sakai, S. Zaima and Y. Yasuda, “Control of Crystal Structure and Ferroelectric Properties of Pb(ZrxTi1-x)O3 Films Formed by Pulsed Laser Deposition”, Jpn. J. Appl. Phys. Part1, 39(12B), pp.7035-7039 (2000).
45. T. L. Ren, T. Q. Shao, W. Q. Zhang, C. X. Li, J. S. Liu, L. T. Liu, J. Zue and Z. J. Li, “Fabrication and Properties of Silicon-based PZT Thin Films for MFSFET Applications”, Microelectronic Engineering, 66, pp.554-560 (2003).
46. Y. Zhu, J. Zhu, Y. J. Song and S. B. Desu, “Laser Assisted Low Temperature Processing of Pb(Zr,Ti)O3 Thin Film”, Appl. Phys. Lett. 73(14), pp.1958-1960 (1998).
47. H. C. Lee and W. J. Lee, “Characterization of Pb(Zr,Ti)O3 Thin Films Fabricated by Plasma Enhanced Chemical Vapor Deposition on Ir-based Electrodes”, J. Vac. Sci. Technol. A, 20(6), pp.1939-1947 (2002).
48. Y. Wang, H. Lai, W. Chan and C. L. Choy, “Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films Integrated at Low Temperatures on LaNiO3-buffered Glass”, Jpn. J. Appl. Phys. Part1, 42(11), pp. 6988-6989 (2003).
49. S. –M. Koo, S. I. Khartsev, C. –M. Zetterling, A. M. Grishin and M. Őstling, “Ferroelectric Pb(Zr,Ti)O3/Al2O3/4H-SiC Diode Structures”, Appl. Phys. Lett., 81(5), pp.895-897 (2002).
50. V. Lingwal and N. S. Panwar, “Capacitance-Voltage Characteristics of NaNbO3 Thin Films”, J. Appl. Phys., 94(7), pp. 4571-4576 (2003).
51. M. Tsukada, H. Yamawaki and M. Kondo, “Crystal Structure and Polarization Phenomena of Epitaxially Grown Pb(Zr,Ti)O3 Thin Film Capacitors”, Appl. Phys. Lett., 83(21), pp.4393-4395 (2003).
52. T. Kiguchi, N. Wakiya, K. Shinozaki, N. Mizutani, “HRTEM Investigation of the 90° Domain Structure and Ferroelectric Properties of Multi-Layered PZT Thin Films”, Microelectronic Engineering, 66, pp.708-712 (2003).
53. R. Gupta, M. P. Srivastava, V. R. Balakrishnan, R. Kodama and M. C. Peterson, “Deposition of Nanosized Grains of Ferroelectric Lead Zirconate Titanate on Thin Films Using Dense Plasma Focus”, J. Phys. D: Appl. Phys. 37, pp.1091-1094 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top