跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃尚峰
研究生(外文):Shang-Feng Huang
論文名稱:不同熱處理對鐵離子佈植矽基板微結構的影響
論文名稱(外文):Effect of Different Annealing Processes on Microstructure of Fe Implanted Silicon Substrate
指導教授:蔡哲正
指導教授(外文):Prof. Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:離子佈植鐵矽化物共鍍
外文關鍵詞:ImplantationIron disilicideCo-sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
具有半導體性質的鐵矽化物(β-FeSi2)在近十年獲得了很大的注意,因為有研究顯示,它具有0.8eV的直接能隙,可以發出波長約1.55μm的光。利用這個性質,我們便可以合成矽基材料的紅外線發光元件(IR-Light emitting device, IR-LED)或紅外線感測器(IR Sensor)。但是有關其發光性質仍然有許多爭議,M. G. Grimaldi et al.認為β-FeSi2析出物的發光性質與它的形成位置有很大的關係,因此本實驗的目的即是利用各種不同的熱處理方法,看是否可以在不同的位置上形成β-FeSi2析出物。
目前利用離子佈植技術來合成β-FeSi2析出物者,大都會在離子佈植期間將靶材加熱,之後在830oC持溫18小時以上後,便可以在基材內部獲得β-FeSi2析出物。而我們的實驗則是在室溫情況下進行離子佈植,之後同樣830oC持溫18小時,從TEM影像可以觀察到β-FeSi2析出物是在表面形成。這是因為在離子佈植時加熱靶材可以使基板不被非晶質化,而鐵原子在非晶矽的擴散係數大於晶體矽的,所以造成我們的鐵原子都會先擴散到表面後再形成β-FeSi2析出物。因此我們接下來會先利用低溫固態磊晶方法來回覆非晶矽,之後再升到高溫形成β-FeSi2析出物,來看看它的形成位置會不會有什麼不一樣。
共鍍(Co-sputtering)技術也會被用來合成β-FeSi2析出物。因為離子佈植最後都避不了會形成缺陷如差排環等,我們會利用離子槍來共鍍鐵矽,而為了要避免鐵及矽的氧化,最後還會蓋上一層鍺,之後經過同樣的熱處理後,我們會發現鍺的存在會使得β-FeSi2析出物的形成延遲發生。
Semiconducting β-FeSi2 have attracted great attention in the recent decade. Because it has a direct band-gap of about 0.8eV, and it can emit a light of 1.55μm. With this property, silicon based IR-LED(Light emitting device) and IR-Sensor can be synthesized. But its optical property is still controversial, M. G. Grimaldi et al. suggested that the luminescence of β-FeSi2 precipitates is related to its location. So that our study is using a variety of annealing process to see if we can control the location of β-FeSi2 precipitates.
The general method of ion beam synthesized(IBS) β-FeSi2 precipitates is to heat target during ion implantation. After annealing at 830oC for 18 hours, β-FeSi2 will precipitate inside specimen. In our experiment, ion implantation will be carried out under room temperature. After annealing at 830oC for 18 hours, we can observe β-FeSi2 precipitates close to surface by TEM images. Because heating of target can avoid the amorphization of silicon substrate, and the diffusivity of Fe atom in amorphous silicon is larger than in crystal silicon.. This fact will result in diffusion of Fe atoms to surface before precipitation of β-FeSi2. In the next experiment, the low temperature solid phase epitaxy will be conducted before annealing at 830oC for 18 hours. Likewise, the location of β-FeSi2 precipitates will be observed.
We also synthesized β-FeSi2 precipitates by co-sputtering. Samples of IBS always produce defects like dislocation loops. Presentation of defects is also harmful to the luminescence of β-FeSi2 precipitates. Ion gun will be used to co-sputtering Fe-Si atoms onto Si(001) wafer. In order to avoid oxidation of Fe and Si atoms, a thickness of about 50nm Germanium layer will be capped on our sample. After different annealing process, the retardation of transformation of Fe silicide by presentation of Ge layer will be observed.
總目錄
摘要……………………………………………………………………..Ⅰ
Abstract…...……………………………………………………………..Ⅱ
致謝……………………………………………………………………..Ⅲ
總目錄…………………………………………………………………..Ⅳ
表目錄………………………………………………..…………………Ⅶ
圖目錄……………………………………………………………..……Ⅷ

第一章�序論.………………………………..……….1
� � 1.1金屬矽化物的發展…………………………………………1
� � 1.2鐵矽化物的發展……………………………………………2
� � 1.3鐵矽化物析出物的製程技術………………………………3
� � � 1.3.1 IBS製程………………………………………………3
� � � 1.3.2 RDE製程……………………………………………..4
� � � 1.3.3其他形成FeSi2磊晶的方法………………………….6
� � � � 1.3.3.1化學束磊晶方法………………………………..6
� � � � 1.3.3.2金屬有機化學氣相沈積法……………………..7
� � � � 1.3.3.3脈衝雷射沈積…………………………………..7
� � 1.4塊材β-FeSi2和薄膜及析出物β-FeSi2之不同的發光行為.8
� � � 1.4.1晶格不對稱…………………………………………....8
� � � 1.4.2體積縮減……………………………………………….9
� � � 1.4.3熱效應………………………………………………….9
� � 1.5實驗動機…………………………………………………….10

第二章�實驗流程………………………………...….11
� � 2.0引言………………………………………………………….11
� � 2.1試片準備…………………………………………………….11
� � � 2.1.1試片切割………………………………………………11
� � � 2.1.2試片清洗………………………………………………11
� � 2.2離子佈植…………………………………………………….12
� � � 2.2.1 SNICS…………………………………………………13
� � � 2.2.2加速器…………………………………………………13
� � 2.3真空退火…………………………………………………….14
� � 2.4拉曼光譜測量……………………………………………….14
� � � 2.4.1拉曼光譜的應用………………………………………14
� � � 2.4.2拉曼光譜的原理………………………………………15
� � 2.5二次離子質譜儀…………………………………………….16
� � 2.6橫截面電子顯微鏡試片準備與觀察……………………….17
� � � 2.6.1橫截面電子顯微鏡試片準備…………………………17
� � � 2.6.2穿透式電子顯微鏡原理………………………………18

第三章�實驗結果與討論…………………………....20
� � 3.0離子佈植……………………………………………………20
� � 3.1直接在高溫830oC退火的試片……………………………21
� � 3.2前段溫度退火的試片………………………………………23
� � 3.3前段溫度400oC的二階段退火試片………………………27
� � 3.4前段溫度500oC的二階段退火試片………………………30
� � 3.5前段溫度530oC的二階段退火試片………………………31
� � 3.6前段溫度550oC的二階段退火試片………………………32
� � 3.7表面鉭矽化物的形成………………………………………32
� � 3.8前段實行RTA 900oC 5min…………………………………34
� � 3.9共鍍系統…………………………………………………….36
� � 3.10(As-deposited)及在830oC持溫18小時後的結果………..37
3.11快速退火後的試片及在後面830oC持溫4小時的影響….39
3.12歐傑電子能譜儀(Auger electron spectrometer, AES)…….41

第四章�結論…………………………………..……..44

參考文獻……………………………………………....75

表目錄
表1.1 各種半導體矽化物……………………………………………...46表1.2 鍍膜方式的比較…………………………………………...........47
表3.1 離子佈植實驗條件……………………………………………...48





























圖目錄
圖1.1鐵-矽相圖………………………………………………………...49
圖1.2 高劑量與低劑量的差別………………………………………...50
圖1.3 RDE技術製作LED……………………………………………...51
圖2.1實驗流程圖………………………………………………………52
圖2.2離子佈植…………………………………………………………53
圖2.3真空退火…………………………………………………………53
圖2.4拉曼光譜分析……………………………………………………54
圖3.1 As-implantd試片TEM、TRIM、SIMS分析…………………..55
圖3.2 A1試片的TEM影像及拉曼光譜分析…………………………56
圖3.3 A2試片的TEM影像及拉曼光譜分析…………………………57
圖3.4 400oC及500oC退火兩小時的TEM影像……………………..58
圖3.5 530oC及550oC退火兩小時的TEM影像……………………..59
圖3.6 圖3.5(c)中a點及b點的EDX分析結果……………………..60
圖3.7各溫度SIMS的分析結果………………………………………61
圖3.8各濃度SIMS的分析結果………………………………………62
圖3.9 B2片的TEM影像及拉曼光譜分析結果………………………63
圖3.10 C2試片的TEM影像及拉曼光譜分析結果…………………..64
圖3.11 D2試片的TEM影像及拉曼光譜分析結G………………….65
圖3.12 E2試片的TEM影像及拉曼光譜分析結果………………….66
圖3.13前嵷騆m試片的方法………………………………………….67
圖3.14放置試片方法前後的差異……………………………………..67
圖3.15在900oC快速退火的結果……………………………………..68
圖3.16快速退火加830oC持溫18小時的結果………………………69
圖3.17共鍍鐵-矽的方法…………K………………………………….70
圖3.18 As-deposited試片………………………………………………70
圖3.19共鍍鐵-矽試片在830oC18小時後的結果…………………….71
圖3.20 GIXRD的結果…………………………………………………71
圖3.21 RTA後GIXRD的結果……………………………………….72
圖3.22 RTA及830oC4小時後GIXRD的結果………………………72
圖3.23 As-deposited試片歐傑電子縱深分析…………………………73
圖3.24 830o4小時退火後試片的歐傑電子縱深分析…………………73
圖3.25 RTA700oC試片的歐傑電子縱深分析…………………………74
圖3.26 RTA900oC試片的歐傑電子縱深分析…………………………74
圖3.27 RTA1000oC試片的歐傑電子縱深分析………………………..74
【1】S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, P. Petricola, G. Moccia, R. Alfonsetti, and R. Diamanti, J. Vac. Sci. Technol. A 16, 1207 (1998).
【2】Jun Amano, P. Merchant, T. R. Cass, J. N. Miller, and Tim Koch, J. Appl. Phys. 59, 2689 (1986).
【3】K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, and G. Ulm, Appl. Phys. Lett. 69, 3662 (1996).
【4】S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinos, and J. I. Lee, Appl. Phys. Lett. 80, 1468 (2002).
【5】P. Giordano, J. P. Gonchond, J. C. Oberlin, P. Normandon, R. Basset, and A. Chantre, Appl. Phys. Lett. 54, 2429 (1989).
【6】V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, and V. V. Nemoshkalenko, Phys. Rev. B 46, 9380 (1992).
【7】V. K. Zatsev, S. V. Ordin, V. I. Tarasov, and M. I. Fedorov, Sov. Phys. Solid State 21, 1454 (1979).
【8】M. Rebien, W. Henrion, H. Angermann, and S. Teichert, Appl. Phys. Lett. 81, 649 (2002).
【9】Lianwei Wang, Linhong Qin, Yuxiang Zheng, Wenzhong Shen, Xiangdong Chen, Xian Lin, Chenglu Lin, and Shichang Zou, Appl. Phys. Lett. 65, 3105 (1994).
【10】Castor Fu, M. P. C. M. Krijn, and S. Doniach, Phys. Rev. B 49, 2219 (1994).
【11】Y. Dusausoy, J. Protas, R. Wandji, and B. Roques, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 1209 (1971).
【12】M. E. Schlesinger, Chem. Rev. 90, 607 (1990).
【13】V. Darakchieva, M. Baleva, M. Surtchev, and E. Goranova, Phys. Rev. B 62, 13 057 (2000).
【14】L. Wang, L. Qin, Y. Zheng, S. Shen, X. Chen, X. Lin, C. Lin, and S. Zou, Appl. Phys. Lett. 65, 3105 (1994).
【15】Z. Yang and K. P. Homewood, J. Appl. Phys. 79 (8), 15 April 1996
【16】K. Lefki, P. Muret, N. Cherief, and R.C. Cinti, J. Appl. Phys. 69, 352 (1991).
【17】L.Wang, M. Ostling, K. Yang, L. Qin, C. Lin, X. Chen, S. Zou, Y. Zheng, and Y. Qian, Phys. Rev. B 54, R11 126 (1996).
【18】M. Rebien, W. Henrion, U. Mu¨ller, and S. Gramlich, Appl. Phys. Lett. 74, 970 (1999).
【19】E. Arushanov, E. Bucher, C. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, Phys. Rev. B 52, 20 (1995).
【20】A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, and H. Lange, J. Appl. Phys. 79, 7708 (1996).
【21】K. Rademacher, R. Cariusm, and S. Mantl, Nucl. Instrum. Methods Phys. Res. B 84, 163 (1994).
【22】C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci, Phys. Rev. B 45, 8822 (1992).
【23】D. N. Leong, M. A. Harry, K. J. Reeson, and K. P. Homewood, Nature (London) 387, 686 (1997).
【24】M. G. Grimaldi, S. Coffa, C. Spinella, F. Marabelli, M. Galli, L. Miglio, V. Meregali, J. Lumin. 80, 467(1999).
【25】K. Oyoshi, D. Lessen, R. Carius, S. Mantl, Thin Solid Films, 381, 202(2001).
【26】B. Schuller, R. Carius, S. Lenk, S. Mantl, Microelectronic Engineering, 60, 205(2002).
【27】C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, M. G. Grimaldi, Appl. Phys. Lett. 76, 173(2000).
【28】K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kwell, M. A. Lourenco, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, T. Butler, Thin Solid Films 381, 188(2001).
【29】M. A. Lourenco, T. M. Butler, A. K. Kewell, R. M. Gwilliam, K. J. Kirkby, K. P. Homewood, Nucl. Instrum. Meth. Phys. Res. B 175-177, 159(2001).
【30】T. Suemsdu, Y. Negishi, K. Takakura, and F. Hasegawa, Jpn. J. Appl. Phys., part 2 39, L1013 (2000).
【31】T. Suemasu, Y. Iikura, K. Takakura, F. Hasegawa, J. Lumin. 87-89, 528(2000).
【32】T. Suemasu, Y. Iikura, T. Fujii, K. Takakura, N. Hiroi and F. Hasegawa, Jpn. J. Appl. Phys. 38, L60(1999).
【33】T. Suemasu, M. Tanaka, T. Fujii, S. Hashimoto, Y. Kumagai and F. Hasegawa, Jpn. J. Appl. Phys. 38, L1225(1995).
【34】T. Suemasu, T. Fujii, Y. Iikura, K. Takakura and F. Hasegawa, Jpn. J. Appl. Phys. 37, L1513(1998).
【35】張俊彥, “積體電路製程及設備技術手冊”, 經濟部技術處, P275, 1997年7月.
【36】J. Y. Natoli, I. Berbezier, A. Ronda, J. Derrien, J. Crystal Growth, 146, 444 (1995).
【37】Christian Erich Zybill, Wei Huang, Inorganica Chemica Acta, 291, 380 (1999).
【38】Zhengxin Liu, Motoki Watanabe, Mitsugu Hanabusa, Thin Solid Films, 381, 262 (2001).
【39】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys., 89, No. 2, 965 (2001).
【40】N. E. Christensen, Phys. Rev. B 42, 7148 (1990).
【41】M. G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli, D. B. Migas, and Leo Miglio, Phys. Rev. B 66, 085319 (2002).
【42】D. Sander, A. Enders, and J. Kirschner, Appl. Phys. Lett. 67, 1833 (1995).
【43】K. Herz, M. Powalla, and A. Eicke, Phys. Status Solidi A 156, 3(1997).
【44】L. Martinelli, E. Grilli, D. B. Migas, Leo Miglio, F. Marabelli, C. Soci, M. Geddo, M. G. Grimaldi, and C. Spinella, Phys. Rev. B 66, 085320 (2002).
【45】S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, Phys. Rev. B 58, 10389 (1998).
【46】T. SuemasuU, T. Fujii, K. Takakura, F. Hasegawa, Thin Solid Films, 381, 209 (2001).
【47】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys. 89, 965 (2001).
【48】Aiko Narazaki, Tadatake Sato, Yoshizo Kawaguchi, and Hiroyuki Niino, Appl. Phys. Lett. 83, 3078 (2003).
【49】Yoshihito Maeda, Kenji Umezawa, Yoshikazu Hayashi, Kiyoshi Miyake, Thin Solid Films, 381, 219 (2001).
【50】B. Schuller, R. Carius, and S. Mantl, J. Appl. Phys. 94, 207 (2003).
【51】J. P. de Souza, L. Amaral, and P. F. P. Fichtner, J. Appl. Phys. 71, 5423 (1992).
【52】W. Snetake and J. T. Yates. Jr., Surface Infrared and Raman Spectroscopy: Methods and Applications, Plenum, New York, (1995).
【53】R. G. Wilson, F. A. Stecie, V. W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, New York (1989).
【54】G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials, Wiley, New York (1979).
【55】J. Narayan, C. W. White, O. W. Holland, and M. J. Aziz, J. Appl. Phys. 56, 1821 (1984).
【56】 J. Narayan, C. W. White, M. J. Aziz, B. Stritzker, and A. Walthuis, J. Appl. Phys. 57, 564 (1985).
【57】 P. W. Wang, H. S. Cheng, W. M. Gibson, and J. W. Corbett, J. Appl. Phys. 60, 1336 (1986).
【58】H. C. Cheng, T. R. Yew, and L. J. Chen, J. Appl. Phys. 57, 5246 (1985).
【59】S. S. Lau, J. S. Y. Feng, and J. O. Olowolafe, M. A. Nicolet, Thin Solid Films 25, 415 (1975).
【60】 H. C. Cheng, L. J. Chen, and T. R. Your, Mater. Res. Soc. Symp. Proc. 25, 441 (1984).
【61】V. E. Borisenko, Semiconducting silicides, Chap. 4, Springer (2000).
【62】T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (Ed.) Binary Alloy Phase Diagrams, Second Edition (American Society for Metals. Metals Park, OH, 1990), vols. 1-2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top