跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉柏
研究生(外文):Chia-Po Lin
論文名稱:高密度電漿化學氣相沈積法成長含氧碳化矽做為氫離子感應膜之研究
論文名稱(外文):Study on silicon oxycarbide deposited by high density plasma chemical vapor deposition for hydrogen ion-sensitive membrane
指導教授:陳建瑞陳建瑞引用關係
指導教授(外文):Jiann-Ruey Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:102
中文關鍵詞:高密度電漿離子感應場效電晶體含氧碳化矽酸鹼感測器三甲基矽烷
外文關鍵詞:HDPCVDISFETSiOxCypH meter3MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
離子感應場效電晶體(ISFET)為一種結合電化學原理與場效電晶體的微型感測器,利用MOSFET之基本原理,將其金屬閘極以參考電極/電解液/離子感應膜(絕緣層)取代,因此ISFET同時具有離子選擇與場效電晶體元件的特性。
本論文係以高密度電漿化學氣相沈積法(High Density Plasma Chemical Vapor Deposition,HDPCVD)沈積含氧碳化矽(SiOxCy)做為氫離子感應膜,藉由通以不同氣體流量比(三甲基矽烷及氧氣(3MS/O2)),在不同電漿功率,以及不同製程溫度下,於p-type (100)矽基板上沈積感應薄膜製備SiOxCy / Si 之EIS結構,經由C-V量測來探討平能帶電壓(Flat band voltage)變化的關係,以瞭解做為氫離子感應膜的感測響應度。此外,薄膜的特性利用化學分析電子儀(ESCA)、能量散佈光譜儀(EDS)、n&k、FTIR光譜儀、低掠角X光繞射分析與原子力顯微鏡(AFM)做各項的分析。
由實驗結果發現,在製程溫度200℃下,含氧碳化矽薄膜於氣體流量比為20/2(三甲基矽烷/氧氣,3MS/ O2),電漿功率為600瓦時,於酸鹼液pH1~pH11範圍所獲得之感應靈敏度及穩定性為最佳,其感測度約為56.35 mV/pH。而將本製程參數之感應膜做成EIS雙層結構時,感測度提升至64.35mV/pH。
Abstract
The ion sensitive field effect transistor (ISFET) is a microsensor consists of the theorem of electrochemistry and the characteristic of a field effect transistor. The principle of the MOSFET is be used for ISFET. The metalline gate of the MOSFET is substituted for reference electrode / electrolyte / insulator. Hence, ISFET is a device composed of a ion selective electrode and a MOSFET device.
In this thesis the silicon oxycarbide ( SiOxCy ) membrane has been prepared by high density plasma chemical vapor deposition, HDPCVD, method as a novel pH-sensitive layer under different gas flow rate (3MS/O2) and plasma power at different temperatures. The SiOxCy membrane was directly deposited on the p-type silicon substrate by HDPCVD to form the SiOxCy / Si EIS structure. The variations of flat band voltage were reported by C-V measurement to survey the sensitivity of membrane. The characteristics of membrane were measured and analysed by Electron spectroscopy for chemical analysis (ESCA), Energy dispersive spectrometer (EDS), n&k, Fourier transform IR (FTIR), Grazing incident X-ray diffraction and Atomic force microscopy (AFM), respectively.
Experimental results show that the fabrication parameters and characteristics of SiOxCy membrane are determined at gas flow rate 20/2 (3MS/O2), the plasma power 600W at 200oC via the EIS structure. There exhibits the best pH response of about 56.35 mV/pH in the range of pH 1-11. The pH response increases to 64.35 mV/pH via the double layers of the EIS structure.
參考文獻

[1]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiologoical measurement”, IEEE Transaction on Biomedical Enginnering,BME-17 (1970), pp.70-71.

[2]W. M. Siu and R. S. C. Cobbold, “Basic properties of the e;ectrolyte-SiO2-Si system:physical and theoretical aspects”, IEEE Transaction Electron Devices, vol. ED-26, NO.11 (1979), pp. 1805-1815.

[3]C. D. Fung,P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transaction Electron Devices, vol. ED-33, NO.1 (1986), pp.8-18.

[4]D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, “Ion sensing devices with silicon nitrde and borosilicate glass insulators”, IEEE Transaction Electron Devices, vol. ED-34 (1987), pp.1700-1706.

[5]A. Voorthuyzen and P.Bergveld, “Photoelectric effect in Ta2O5-SiO2-Si structures”, Sensors and Actuators B, vol. 1 (1990), pp. 350-353.

[6]L. Bosse, H. H. Van Den Vlekkert and N. F. De Rooij, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol. 2 (1990), pp.228-233.

[7]A. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs”, Sensors and Actuators B, vol. 2 (1992), pp.367-370.

[8]A. Garde, J. Alderman, W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sensors and Actuators B, vol. 26 (1995), pp.341-344.

[9]H. Hara and T. Ohta, “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor”, Sensors and Actuators B, vol. 32 (1996), pp.115-119.

[10]D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, “Effect of heat treatment on Ta2O5 sensing membrance for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol. 34 (1996), pp. 350-353.

[11]M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordo and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sensors and Actuators B, vol. 35 (1996), pp.228-233.

[12]M. N. Niu, X. F. Ding and Q. Y. Tong, “Effect of two type of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, vol. 37 (1996), pp.13-17.

[13]T. Mikolajick, R. Kuhnhold and H. Ryssel, “The pH-sensing properties of Ta2O5 films fabricated by metal organic low pressure chemical vapor deposition”, Sensors and Actuators B, vol. 44 (1997), pp.262-267.

[14]H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on pHPZC and surface potential of tin oxide gate ISFET”, Material Chemistry and Physics, vol. 58 (1999), pp.6-11.

[15]L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrance”, Material Chemistry and Physics, vol. 63 (2000), pp.19-23.

[16]B. H. Van Der Schoot, H. H. Van Den Vlekkert, N.F. De Rooij, “A Flow injection analysis system with galss-bonded ISFETs fot the simultaneous detection og calcium and potassium ions and pH value”, Sensors and Actuators B, vol. 4 (1991), pp.239-241.

[17]L. C. Zhong and G. X. Li, “Biosensor based on ISFET for penicillin determination, Sensors and Actuators B, vol. 14 (1993), pp.507-571.
[18]武世香、虞惇、王貴華,“化學量感測器,感測器技術”,第一期 (1990), 57~62頁。

[19]B. D. Liu, Y. K. Su and S. C. Chen, “Ion-Sensitive Field-effect Transistor with silicon nitride for pH sensing”,Int. J. Electronic, vol. 67,NO.1,(1989), pp.59-63.

[20]Vianello F., Stefani A., Dipaolo M. L., Rigo A., Lui A., Margesin B., “Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET”, Sensors and Actuators B, vol. 37 (1996), pp.269-282.

[21]Senillou A., Jaffrezic-Renault N., Martelet C., Cosnier S., “A miniaturized urea sensor based on the integration of both ammonium based urea ENFET and a reference FET in a single chip”, Talanta vol. 50(1) (1999), pp.219-226.

[22]Kharitonov A. B., Zayats M., Lichtenstein A., Katz E., Willner I., “Enzyme monolayer-functionalized field-effect transistors for biosensor applications”, Sensors and Actuators B, vol. 70 (2000), pp.222-231.

[23]K. Park, S. Choi, M. Lee, B. Sohn, S. Choi, “ISFET glucose sensor system with fast recovery characteristics by employing electrolysis”, Sensors and Actuators B, vol. 83 (2002), pp.90-97.

[24]S. Tetsushi, N. Michihiro, K. Mototsugu, N. Keiko, H. Kaku, S. Toshiro, “Immunological Helicobacter pylori urease analyzer based on ion-sensitive field effect transistor”, Sensors and Actuators B, vol. 67 (2000), pp.265-269.

[25]Emmanuel Selvanayagam Z., P. Neuzil, P. Gopalakrishnakone, U. Sridhar, M. Singh, L. C. Ho, “An ISFET-based
immunosensor for the detection of h-bungarotoxin”, Biosens Bioelectron, vol. 17 (2002), pp.821-826.

[26]V. M. Starodub, N. F. Starodub, “ Electrochemical immune sensors based on the ion-selective field effect transistor for
the determination of the level of myoglobin”, The 13th European Conference on Solid-State Transducers, September 12–15 (1999). In: Bartek M. (Editor). (Bio)Chemical Sensors and Systems. The Hague (The Netherlands): Delft University of Technology (1999), pp.185-188.

[27]Jun-Dar Hwang, Yean-Kuen Fang, You-Joung Song, Dun-Nian Yaung, “Epitaxial Growth and Electrical Characteristics of β -SiC on Si by Low-Pressure Rapid Thermal Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 34 (1995), pp.1447.

[28]H. J. Kim and R. F. Davis, “Theoretically predicted and experimentally determined effects of the Si/(Si+C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films”, Journal of Applied Physics, vol. 60 (1986), pp. 2897.

[29]M. Bhatnagar and B. J. Baliga, IEEE Transaction Electron Devices, vol. 40 (1979), pp.645.

[30]V. E. Chelnokov and A. L. Svrkin, “High temperature electronics using SiC: Actual situation and unsolved problems”, Materials Science and Engineering : B, Vol. 46 (1997), pp.248.

[31]S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985).

[32]Thomas J. Mego, “Guidelines for Interpreting CV Data”, Solid State Technology, May 1990, pp.159-163.

[33]電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 (2002)

[34]D. E Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Faraday I, Vol. 70 (1974), pp. 1807-1818.

[35]牛蒙年、丁辛芳、董勤義,“氧化物-電解溶液界面的表面吸附模型研究”,半導體學報,第六期,第17卷 (1996),458-463頁。

[36]周榮泉、郭文諒,“酸鹼離子感測場效電晶體ISFET元件之模擬與研究”,八十五年度國科會大專學生參與專題研究計畫成果報告,6月(1997),1-149頁。

[37]周榮泉,江榮隆,“以WO3為感測膜之離子感測場效電晶體之模擬與研究”,中華醫學工程學刊,Vol. 17(3) (1997),187-197頁。

[38]Wong, Anthony Sai-Hung, “Theoretical and experimental studies of CVD aluminum oxide as A pH sensitive dielectric for the back contacts ISFET”, ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May , (1985).

[39]張宇能,化工技術,第三卷,民國84年,102頁。

[40]M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York, 7 (1992).

[41]J. O. Carlsson, Thin Solid Film (1985), pp.130,261.

[42]S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology, Nayes, New Jersey (1990), pp.261-268.

[43]F. Kaufman, Adv. Chem. Ser. (1969), pp.80.

[44]V. Dembovsky, Plasma Metallurgy, John Wiley & Sons, New York (1985), pp.14.

[45]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,221頁。

[46]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,240-242頁。

[47]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,250-251頁。

[48]N. R. Mathews, Eric L. Miller, P. J. Sebas, M. M. Hernandez, X. Mathew, S. A. Gamboa, “Electrochemical characterization of a-SiC in different electrolytes”, International Journal of Hydrogen Energy, Vol. 19, Issue 9 (2003), pp.941-944.

[49]汪建明,材料分析,中國材料科學學會 (1980),353-358頁。

[50]Y. Katayama, K. Usami, T. Shimada, Phxilos. Mag. B 43(2) (1981), pp.283.

[51]M. T. Kim, J. Lee, Thin Solid Films, 303 (1997), pp.173.

[52]R. A. C. M. van Seaaij, A. J. M. Berntsen, W. G. J. H. M. van Sark, H. Herremans, J. Bezemer, W. F. van der Weg, J. Appl. Phys. vol. 76 (1) (1994), pp.251.

[53]V. Chu, N. Barradas, J. C. Soares, J. P. Conde, J. Jarego, P. Brogueira, J. Rodreguez, J. Appl, Phys, vol 78(5) (1995), pp.3164.

[54]H.Wieder, C. R. Cardona, M. Guarnieri, Phys. Stat. Sol, B92 (1979), pp.99.

[55]A. Tabata, Y. Kuno, T. Suzuoki, Y. Mizutani, J. Non-Crystal Solids, 1043 (1993), pp.164-166,.

[56]F. Demichelis, G. Crovini, F. Giorgis, C. F. Pirri, E. Tresso, Diamond Rel. Mater. vol. 4 (1995), pp.473,.

[57]S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985).

[58]龔道本,MIS電容器的平能帶電容計算,半導體光電,第一期,第17卷 (1996),第32-34頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top