跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王良德
研究生(外文):Liang-De Wang
論文名稱:利用自組裝高分子及聚苯乙烯奈米球形成規則排列的奈米結構
論文名稱(外文):Forming Periodic Nanostructure via Self-Assemble Diblock Copolymer and Polystyrene Nanospheres
指導教授:蔡哲正
指導教授(外文):Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:54
中文關鍵詞:自組裝二嵌段高分子聚苯乙烯聚甲基丙烯酸甲酯奈米球矽化物
外文關鍵詞:self-assemblediblock copolymerpolystyrenepolymethylmethacrylatenanospheresilicide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:625
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主要是利用二嵌段聚苯乙烯和聚甲基丙烯酸甲酯P(S-b-MMA)自組裝高分子和聚苯乙烯奈米球(polystyrene nanosphere)來形成規則排列的奈米結構。不對稱(asymmetric)比例的二嵌段高分子經過真空退火後,會相分離成最密六方的柱狀(PMMA)和網狀(PS)的結構。經過選擇性蝕刻移除掉PMMA後,就可形成孔洞大小約18奈米,孔洞間距約36奈米的模板。雖然形成這規則排列的奈米遮罩後,可發現有一層薄薄的覆蓋層(wetting layer)介於孔洞結構和矽基板之間,但本實驗仍可成功的利用濺鍍的方式來形成規則排列的奈米點結構。
聚苯乙烯奈米球懸浮液經過溶劑揮發後可自組裝地沈積在親水性的基板上。若我們能控制沈積的奈米球為單層(SL)或雙層(DL)的結構的話,就可利用他們來當作鍍膜時所用的遮罩。奈米結構的間距和大小可分別由奈米球的直徑和鍍膜的厚度來調變。此實驗成功的利用奈米球形成六方結構的鉑(Pt)奈米點和NiSi2的陣列。
鉑的奈米陣列經過750OC真空退火後,會由原先三角形的形狀轉變成球形的形狀。而在體積守恆的前提之下,退火後奈米點的直徑d和原始鍍膜厚度t會有以下的關係: ,此處的aSL為原始三角形的高
故我們只要調變原先的鍍膜厚度,就可得到所想要的奈米結構的大小了。
同樣的,我們蒸鍍及濺鍍30奈米厚的鎳奈米陣列在矽基板上。經過900OC的真空退火後,發現原先在矽基板表面上的鎳會透過二氧化矽層和下面的矽形成NiSi2。我們可由形成矽化物長條狀的方向性來間接證明所形成的相的確是NiSi2。而蒸鍍及濺鍍退火後所形成的矽化物其形態會有所不同,我們也可簡單的由原始鍍膜厚度的不均勻來解釋這個現象。
鎳經過退火後所形成規則排列矽化物的基板,可以拿來當作一個晶格調變(lattice-modulated)的基板。而此基板經過更進一步的表面清理後,對於之後應力場方面的研究及應用,開啟了一條寬廣的道路。
Abstract
Two fantastic nanotemplate were produced in this thesis, the self-assemble diblock copolymer and polystyrene nanospheres. These two masks provide low cost, high throughput, large scale and fundamentally simple means to create periodic nanostructure below photolithographic resolution. First, we demonstrate a large-area fabrication of hexagonally ordered nanopore arrays with an area density of 1011/cm2. We can produce mostly distributed 18 nm Pt nano dots with a 36 nm period by using sputtering technique via block copolymer nanolithography with total molecular weight of 67000g/cm3 and the PS volume fraction of 0.7, inspire of the existence of the wetting layer between the periodic mask and the silicon substrate. Further improvement on this experiment mainly depends on the dry etching such as reactive ion etching in order to penetrate the periodic nanopore through the wetting layer without attacking the original hexagonally close packed structure.
The second part, the nanosphere lithography (NSL), was used to fabricate large periodic arrays of Pt nanodots and nickel disilicide. A single layer of self-assemble polystyrene spheres was first uniformly deposited on a silicon wafer as a mask, and then electron beam vaporization or sputter coating technique were used to deposit a metal layer through the mask. Some DL masks and nanostructures were also found somewhere on the substrate. On one hand, in the sputtered Pt case, the size of and inter-particle spacing between the Pt dots are tunable simply by varying deposition thickness t the diameter of the polystyrene spheres D.
The relationship between the dot size after annealing d and as-deposited film thickness t is shown as follows:
On the other hand, we both evaporate and sputter 30nm Ni nanoparticle arrays via this self-assemble nanosphere lithography (NSL). The as-deposited morphology between these two techniques can be easily explained on the perspectives of incident angle and energy. Furthermore, the nickel pattern after annealing at 900oC shows clearly two-directional facet bar in the SEM analysis, which gives us an indirection hint that the bar represents the nickel disilicide phase. As a result, this provides a lattice-modulated substrate and opens a broad way in further research and applications.
1. Introduction 3
1.1 What is nano? 3
1.2 Reasons for Large Scale Quantum Dot Array 4
1.3 The Development of Lithography 4
1.4 Block Copolymer Lithography 5
1.4.1 Motivation 5
1.4.2 What is Block Copolymer?? 7
1.4.3 The P(S-b-MMA) System 8
1.4.4 Surface Treatment on P(S-b-MMA) Block Copolymer System 9
1.4.4.1 Introduction 9
1.4.4.2 Surface Pretreatment by P(S-r-MMA) Copolymers 9
1.4.4.3 Surface Pretreatment by Hydrogen Passivation 10
1.4.4.4 Annealing Parameters 11
1.4.5 The Recent Progress of P(S-b-MMA) Systems 11
1.4.5.1 The Virgin P(S-b-MMA) Diblock Copolymers 11
1.4.5.2 Addition of Homopolymer into Diblock Copolymer System 11
1.4.5.3 Volume Contractions Induced by Crosslinking 12
1.5 Nanosphere Lithography 14
1.5.1 Introduction 14
1.5.2 Structural Motifs and Parameters Formed by NSL 14
1.5.2.1 Characteristics of Single-Layer Periodic Particle Arrays 15
1.5.2.2 Specification of Double-Layer Periodic Particle Arrays 16
2. Experimental 21
2.1 Self-Assembled P(S-b-MMA) Diblock Copolymer System 21
2.1.1 The Manufacturing Process of Self-Assembled Diblock Copolymer 21
2.2 Polystyrene Nanosphere Lithography 22
2.2.1 The Fabrication Process of Polystyrne Monolayers 22
2.3 Introduction to Experimental Facilities 24
2.3.1 Deposition Systems 24
2.3.1.1 Electron Beam Deposition System 25
2.3.1.2 Sputtering Coating Systems 25
2.3.2 Analysis Apparatus 26
2.3.3 Annealing System 27
3. Results and Discussion 28
3.1 Block Copolymer Lithography 28
3.1.1 Results and Discussion of Polystyrene Nanoporous Template 28
3.1.2 Metal Deposition via Diblock Copolymer Template 31
3.1.3 Suggestions and Prospect of the Diblock Copolymer Systems 32
3.2 Polystyrene Nanosphere Lithography 33
3.2.1 Results of Polystyrene Nanosphere Formation 33
3.2.1.1 Single Layer Periodic Nanomasks 33
3.2.1.2 Double Layer Template 34
3.2.1.3 Influence of the Evaporation Rate on the Packing Process 35
3.2.2 Metal Deposition Using Polystyrene Nanosphere Lithography 37
3.2.2.1 The Sputtering Coatings 37
3.2.2.2 Electron Beam Evaporation Deposition 38
3.2.3 Size-Tunable Platinum Nanoparticles and Surface Cluster Arrays 40
3.2.4 Periodic Nickel Disilicide Formation by NSL 43
3.2.4.1 Silicide Formation in the Electron Beam Deposition Pattern 43
3.2.4.2 Silicide Formation in the Sputtering Coating Pattern 45
3.2.4.3 Morphology Difference during Nickel Disilicide Formation 46
4. Conclusions 48
Reference 49
Reference
1.1.1 Sheng, H. W. ; Lu, K.; Ma, E. Nanostruct. Mater., 10, 865(1998)
1.1.2 Sambles, J. R. Proc. R. Soc. London, Ser. A, 324, 339(1971)
1.1.3 Peters, K.F.; Cohen, J. B. ; Chung, Y.-W. Phys. Rev. B, 57, 13430(1998)
1.1.4 Goldstein, A. N.; Echer, C. M.; Alivisators, A. P. Science, 256, 1425(1992)
1.1.5 Clevland, C. L.; Luedtke, W. D.; Landman, U. Phys. Rev. B, 60, 5065(1999)
1.1.6 Buffat, P.; J.-P. Phys. Rev. A, 13 2287(1976)
1.1.7 Borel, J.-P. Surf. Sci., 106, 1(1981)
1.1.8 Kimberly Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, J. Amer. Chem. Soc. 124, 2312(2002)
1.1.9 H.-G. Boyen, G. Kastle, F. Weigl, B. Koslowski, Science 297, 1533(2002)
1.1.10 H. J. Niu, D. P. Hampshire, Phys. Rev. Lett. 91, 027002-1(2003)
1.3.1 L. R. Harriott, Mater. Sci. Semicond. Process. 1, 93 (1998)
1.3.2 H. C. Pfeiffer, Proc. SPIE 1997, 206(2000)
1.3.3 C. W. Gwyn, J. Vac. Sci. echnol. B 16, 3142(1998)
1.3.4 Y. Gomei, Proc. SPIE 3676, 1(1999)
1.3.5 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001)
1.3.6 John C. Hulteen, Richard P. Van Duyne, J. Vac. Sci. Technol. A 13(3), 1553(1995)
1.4.1 K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002)
1.4.2 J. V. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075(1997)
1.4.3 Huczko, Appl. Phys. A Mater. Sci. Proc. 70, 365(2000)
1.4.4 E. J. Bae, W. B. Choi, K. S. Jeong, Adv. Mat. 14, 277(2002)
1.4.5 H. Msuda, A. Abe, M. Nakao, A. Yokoo, Adv. Mat 15, 161(2003)
1.4.6 H. Masuda, K. Yasui, K. Nishio, Adv. Mat. 12, 1031(2000)
1.4.7 D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. 100, 14037(1996)
1.4.8 H. Zeng et al., J. Appl. Phys. 87, 4718(2000)
1.4.9 H. Masuda, K. Fukuda, Science 268, 1466(1955).
1.4.10 A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys. 84, 6023(1998); Adv. Mater. 11, 483(1999)
1.4.11 H. Masuda. H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett. 77, 2770(1997)
1.4.12 T. Thurn-Albrecht, J. Schotter, A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Science, 290, 2126(2000)
1.4.13 T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science, 273, 932(1996)
1.4.14 T. Thurn-Albrecht, J. Derouchey, T.P. Russell, H. M. Jaeger, Macromolucules, 33, 3250(2000)
1.4.15 H. Masuda, H Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett. 71, 2770(1997)
1.4.16 O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 72, 1173(1998)
1.4.17 A. P. Li, F. Muller, A. Birner, K. Nieisch, U. Gosele, J. Appl. Phys. 84, 6023(1998)
1.4.18 J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367(1999)
1.4.19 J. Liang, H. Chik, A. Yin, J. Xu, J. Appl. Phys. 91, 2544(2002)
1.4.20 Ian W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York(1998)
1.4.21 F.S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem, 41, 525(1990)
1.4.22 Lambooy, P., Russell, t. p., Kellogg, G.J., Mayes, A. M., Gallagher, P.D. and Satija, S. K.. Phys. Rev. Lett. , 72, 2899(1994)
1.4.23 Russell, T. P., Lamboy, P., Kellogg, G. J. and Mayes, A. M.. Physica B, 213/214, 22 (1995)
1.4.24 van Dijk, M. A. and van den Berg, R. Macromolucules, 28, 6773 (1995)
1.4.25 Ausserre, D., Raghunathan, V. A. and Maaloum, M.. Journal de Physique Ⅱ, 3, 1485(1993)
1.4.26 Carvalho, B. L. and Thomas, E. L.. Physical Review Letters, 73, 3321(1994)
1.4.27 P. Mansky, C. K. Harrison, and P. M. Chaikin, Appl. Phys. Lett. 68, 2586(1996)
1.4.28 Miri Part, Christopher Harrison, Paul M. Chaikin, R. A. Register, D. H. Adamson, Science 276, 1401(1997)
1.4.29 C. Harrison, M. Part, P. M. Chaikin, R. A. Register, J. Vac. Sci. Technol. B 16(2), 544(1998)
1.4.30 Burke, J. J., Weiss, V., Eds. Block and Graft Copolymers; Syracuse University Press: New York(1973)
1.4.31 Legge, N. R.; Holden, G.; Schroeder, H. E. Thermoplastic Elastomers. A comprehensive review; Hanser: New York(1987)
1.4.32 T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, T. P. Russell, Adv. Mater. 11, 787(2000)
1.4.33 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001)
1.4.34 Ting Xu, H. C. Kim, J. DeRouchey, C. Seney, C. Levesque, T. P. Russell, Polymer 42, 9091(2001)
1.4.35 C. T. Black, K. W. Guarini, K. R. Milkove, S. M. Baker, T. P. Russell, Appl. Phys. Lett. 79, 409(2001)
1.4.36 M. Park, P. M. Chaikin, R. A. Register, D. H. Adamson, Appl. Phys. Lett. 79, 257(2001)
1.4.37 K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, T. P. Russell, Nano Lett. 2, 933(2002)
1.4.38 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002)
1.4.39 W. A. Lopes, Phys. Rev. E 65, 031606-1(2002)
1.4.40 M. J. Misner, H. S.kaff, T. Emrick, T. P. Russell, Adv. Mater. 15, 221(2003)
1.4.41 U. Jeong, H. C. Kim, R. L. Rodriguez, I. Y. Tsai, T. P. Russell, Adv. Mater. 14, 274(2002)
1.4.42 U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, T. P. Russell, Adv. Mater. 15, 1247(2003)
1.4.43 P. Mansky, P. M. Chaikin, E. L. Thomas, J. Mater. Sci. 30, 1987(1995); P. Mansky, P. M. Chaikin, M. Shayegan, L. J. Fetters, Bull. Am. Phys. Soc. 36, 1051(1991)
1.4.44 A. Reiser, Photoreactive Polymers, The Science and Technology of Resists, Wiley, New York(1989)
1.4.45 B. Ranby, J. F. Rabek, Photodegradation, Photo-Oxidation and Photostabilization of Polymers, Wiley, New York(1975).
1.4.46 M. Yan, M. Bartlett, Nano Lett. 2, 275(2002)
1.4.47 M. Yan. Polym. News 27, 6(2002)
1.4.48 M. Bartlett, M. Yan, Adv. Mater. 13, 1449(2001)
1.4.49 M. Bartlett, M. Yan, Polym. Mater. Sci. Eng. 83, 451(2000)
1.4.50 X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, F. Cerrina, Macromolecules 33, 9575(2000)
1.4.51 P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 275, 1458(1997)
1.4.52 E. Huang, L. Rockford, T. P. Russell, C. J. Hawker, Nature 395, 757(1998)
1.4.53 P. Mansky, T. P. Russell, C. J. Hawker, M. Pitsikalis, I. Mays, Macromolecules 30, 6810(1997)
1.4.54 E. Huang, S. Pruzinsky, T. P. Russell, Macromolecules 32, 5299(1999)
1.4.55 C. J. Hawker, E. Elce, J. Dao, W. Volksen, T. P. Russell, G. G. Barclay, Macromolecules 29, 2686(1996)
1.4.56 M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 26, 2987(1993)
1.4.57 I. Li et al., ibid. 28, 6692(1995)
1.4.58 C. J. Hawker, J. Am. Chem. Soc. 116, 11185(1994)
1.4.59 Physical Properties of Polymers Handbook, edited by J. E. Mark(American Institute of Physics, New York, 1996)
1.4.60 T. Hashimoto, H. Tanaka, H. Hasegawa, Macromolecules 23, 4378(1990)
1.4.61 H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules 23, 240(1991)
1.4.62 A. M. Mayes, T. P. Russell, S. K. Satija, C. F. Majkrzak, Macromolecules 25, 6523(1992)
1.4.63 K. A. Orso, P. F. Green, Macromolucules 32, 1087(1999)
1.4.64 N. Torikai, N. Takabayashi, I. Noda, S. Kozumi, Y. Morii, Y. Matsushita, Macromolecules 30, 5698(1997)
1.4.65 K. I. Winey, E. L. Thomas, L. J. Fetters, J. Chem. Phys. 95, 9367(1991)
1.4.66 K. I. Winey, E. L. Thomas, L. J. Fetters, Macromolecules 25, 422(1992)
1.4.67 K. I. Winey, E. L. Thomas, L. J. Fetters, Macromolecules 25, 2645(1992)
1.4.68 T. Pan, K. Huang, A. C. Balazs, M. S. Kunz, A. M. Mayes, T. P. Russell, Macromolecules 26, 2860(1993)
1.5.1 Hulteen, J. C.; Van Duyne, R. P. J. Vac. Sci. Technol. A, 13, 1553-1558(1995).
1.5.2 Hulteen, J. C.k Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. J. Phys. Chem. B ,103,3854-3863(1999)
1.5.3 Micheletto, R.; Fukuda, H.; Ohtsu, M. Langmuir 11, 3333-3336(1995)
1.5.4 Christy L., Haynes; Richard P. Van Duyne, J. Phys. Chem. B,105, 5599-5611(2001)
1.5.5 Nan Li, Martin Zinke-Allmang, Jpn. J. Appl. Phys., 41, 4626(2002)
1.5.6 Xudong Wang, Christopher J. Summers, Zhong Lin Wang, Nano Lett., 4, 423(2004)
1.5.7 Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wand, J.G. Wen, K. Kempa, Z.F. Ren, Appl. Phys. Lett.,82, 460(2003)
1.5.8 K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, Nano Lett, 3, 13(2003)
2.1K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002)
2.2 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001)
2.3 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002)
2.4 T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, T. P. Russell, Adv. Mater. 11, 787(2000)
2.5 K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, T. P. Russell, Nano Lett. 2, 933(2002)
2.6 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Adv. Funct. Mater. 13, 698(2004)
2.7 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Macromolecules 37, 2972(2004)
2.8 Heather A. Bullen, Simon J. Garrett, Nano Lett. 2, 739(2002)
2.9 Micheletto. R., Fukuda, H., Ohtsu. M., Langmuir 11, 3333(1995)
2.10 Rakers. S., Chi. L. F., Fuchs. H., Langmuir 13, 7121(1997)
2.11 Burmeister. F., Badowsky. W., Braun. T., Wieprich. S., Bonebery. J., Leiderer. P., Appl. Surf. Sci.144-145, 461(1999)
3.1.1 P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 275, 1458(1997)
3.1.2 E. Huang, L. Rockford, T. P. Russell, C. J. Hawker, Nature 395, 757(1998)
3.1.3 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001)
3.1.4 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002)
3.1.5 E. Huang, P. Mansky, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J. Hawker, J. Mays, Macromolecules 33, 80(2000)
3.1.6 Ting, Xu, James. Goldbach, Matthew J. Misner, Seunghyun Kim, K. W. Guarini, C. J. Hawker, T. P. Russell, Macromolecules 37, 2972(2004)
3.1.7 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Adv. Funct. Mater. 13, 698(2004)
3.1.8 K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002)
3.2.1 Burmeister. F., Badowsky. W., Braun. T., Wieprich. S., Bonebery. J., Leiderer. P., Appl. Surf. Sci.144-145, 461(1999)
3.2.2 Christy L., Haynes; Richard P. Van Duyne, J. Phys. Chem. B,105, 5599-5611(2001)
3.2.3 R.D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel., T. A. Witten, Nature 389, 827(1997)
3.2.4 Rakers. S., Chi. L. F., Fuchs. H., Langmuir 13, 7121(1997)
3.2.5 Xudong Wang, Christopher J. Summers, Zhong Lin Wang, Nano Lett., 4, 423(2004)
3.2.6 Hulteen, J. C.k Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. J. Phys. Chem. B ,103,3854-3863(1999)
3.2.7 T. R. Jensen, M. D. Malinsky, C. L. Haynes and R. P. Van Duyne:J. Phys. Chem. B 104, 10549(2000)
3.2.8 Nan Li, Martin Zinke-Allmang, Jpn. J. Appl. Phys., 41, 4626(2002)
3.2.9 K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, Nano Lett, 3, 13(2003)
3.2.10 Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wand, J.G. Wen, K. Kempa, Z.F. Ren, Appl. Phys. Lett.,82, 460(2003)
3.2.11 M. Liehr, H. Lefakis, F. K. LeGoues, and G. W. Rubloff, Physical Review B 33, 5517(1986)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top