跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯綉芳
研究生(外文):Hou, Hsiu-Fang
論文名稱:鎳金屬誘發非晶矽薄膜結晶及鉭矽化物奈米線之研究
論文名稱(外文):Study of Nickel Induced a-Silicon Crystallization and Tantalum Silicide nanowires
指導教授:周立人周立人引用關係黃英碩黃英碩引用關係
指導教授(外文):Li-Jen ChouIng-Shouh Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:57
中文關鍵詞:金屬誘發側向結晶金屬誘發結晶鎳矽化物奈米線鉭矽化物
外文關鍵詞:MILCMICnickel silicidenanowiresTatalum silicide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
以矽為基礎的半導體材料是電子工業的主流,金屬矽化物的特性也因此受到廣泛而深入的研究,本篇論文是以鎳矽化物為主軸,第一部份探討鎳矽化物誘發非晶矽薄膜低溫結晶的機制;第二部分探討鎳矽化物誘發鉭矽化物奈米線。
本篇論文的第一個部分“鎳金屬誘發非晶矽薄膜低溫結晶”,主要探討鎳元素在單根樹枝狀結晶前端的分布。EDS的結果顯示,鎳元素的濃度在單根樹枝狀結晶矽中相當低,直到C-Si / NiSi2的界面,鎳元素的濃度才迅速的上升,值得注意的是,鎳元素的濃度並未在A-Si / NiSi2的界面終止,而有稍向非晶矽中延伸。藉由EDS掃描的方式,我們首次觀察到單根數枝狀結晶矽中鎳元素的分布,同時發現鎳元素在C-Si / NiSi2 與A-Si / NiSi2的界面有不同的分佈情形,這個結果對解決金屬誘發非晶矽薄膜低溫結晶的機制提供一個重要的線索。
本篇論文的第二個部分,一種創新的奈米線 “鎳金屬誘發鉭矽化物奈米線”被合成。奈米線的直徑分佈集中在20-25 nm,長度多集中在數µm,最長則可到達20µm。實驗結果顯示基板效應、溫度效應、時間效應及鎳膜厚度效應對鉭矽化物奈米線的成長有重要的影響,同時歸納出此奈米線可能的成長模式。當在初始鎳膜中加入少量的鐵元素,由EDS的結果顯示,鉭矽化物奈米線中鎳與鐵元素的參雜都明顯的增加。在電性方面,鉭矽化物奈米線展現優越的特性,是做為場發射材料一種有潛力的奈米線。
Silicon based semiconductor materials are widely used material in electronics industry. Silicides have been extensively studied to the past several decades. In this study, metal induced crystallization of amorphous silicon and synthesis of tantalum silicide nanowires based on nickel silicide have been investigated.
At the first part of the thesis, Ni induced crystallization, focusing on the distributed Ni atoms at leading front of the silicon dendrites. The concentration of nickel was very low in crystalline silicon territory, and sharply increased at the interface of C-Si / NiSi2. On the contrary, the nickel contents at the interface of A-Si / NiSi2 decreased gradually and extended to amorphous silicon region. It is the first time for direct observation of Ni distribution in the Si nodule, and at the interface of C-Si / NiSi2 as well as A-Si / NiSi2 by using the EDS line scan measurements. The results may provide the direct evidence to the solution of the long-time debating problem which is the nickel diffusion mechanism at the leading front upon MILC process.
In the second part of the thesis, a novel nanowires - nickel induced tantalum silicide nanowires was synthesized. The diameters of the nanowires are measured at about 20-25 nm. The length distribution of the nanowires is within several micrometers, and the maximum length has been observed to be twenty micrometers. Substrate effect, temperature effect, time effect and Ni thickness effect on wire growth were of great important in our experiment. A plausible growth model is inferred to be vapor-solid growth process (VS) for growth of silicide nanowire. Moreover, the Ni concentration of Ta-silicide nanowires increases when a little Fe element was added in the Ni layer. Furthermore, TaSi2 silicide nanowires have shown superior field emission performance compared with the other types of materials, which present a great potential application for the FE emitter materials.
Chapter 1 Introduction 3
1-1 Metal induced crystallization 6
1-2 Nanowires 8
Chapter 2 Experimental Procedures 10
2-1 Silicon Wafer Cleaning 12
2-2 Screen Thermal Oxidation 12
2-3 Amorphous Silicon Thin Film Deposition 13
2-4 Pattern Transfer Process 13
2-5 Thin Metal Film Deposition 14
2-6 Lift Off Process 15
2-7 Heat treatment 15
2-8 Optical Microscopy Images Analyses 16
2-9 Scanning Electron Microscopy (SEM) 16
2-10 Energy Dispersive Spectrometer (EDS) Analyses 17
2-11 High Resolution Transmission Electron Microscopy Observation 17
2-12 Preparation of the Samples for HRTEM Observation 17
2-13 Advanced Computerized Structure Analyses 19
2-14 Field Emission measurement 20
Ch3 Results and Discussion 21
Part1 Metal induced crystallization 21
3-1 Ni distribution at leading front of those silicon dendrites and the mechanism of Ni-MILC 21
Ch4 Results and Discussion 24
Part 2 Ni induced Ta silicide nanowires 24
4-1 Growth kinetics and microstructure analysis of Ni-Ta silicide nanowires 24
4-1-1 Ni/Ta/Si system 24
4-1-2 Ni/Ta/SiGe system 26
4-1-3 The annealing temperature effect on wire growth 27
4-1-4 The annealing time effect on wire growth 28
4-1-5 The Ni thickness effect on wire growth 29
4-1-6 Fe added effect on the growing of wire 30
4-1-7 The mechanisms of wire growth 31
4-2 Field emission property 34
Ch5 Summary and conclusions 37
Reference 39
Table 52
Figure caption 52
Reference
Chapters 1
[1] D. D. Antono, “VLSI, a combination field of nanotechnology and IT, ’’ IECI Japan Series, 3, 12 (2001)
[2] The International Technology Roadmap for Semiconductors ,” http://public.itrs.net .
[3] M. Yuki, K. Masumo and M. Kunigita, “A full-color LCD addressed by poly-Si TFTs fabricated below 450℃,” IEEE Trans. Electron Devices, 36, 1934 (1989).
[4] T. Tsukada, “Advances in amorphous silicon technology for LCDs,” IEDM 97-531.
[5] C. F. Yeh, C. L. Chen, Y. C. Yang, S. S. Lin, T. Z. Yang and T. Y. Hong, “Low temperature processed poly-Si thin film transistors using solid phase crystallization and liquid phase deposition gate oxide,” Jpn. J. Appl. Phys., 33, 1798 (1994).
[6] H. Y. Lin, C. Y. Chang, T. F. Lei, M. Liu, W. L. Yang, J. Y. Cheng, H. C. Tseng and L. P. Chen, “low temperature and low thermal budget fabrication of polycrystalline silicon thin film transistors,” IEEE Electron Devices Lett., 17, 503 (1996).
[7] K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S. Liang and S. G. Wuu, “To suppress UV damage on the subthreshold characteristics of TFT during hydrogenation for high density TFT SRAM,” IEEE Electron Devices Lett., 18, 4 (1997).
[8] N. D. Toung, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Electron Devices Lett., 43, 1930 (1996)
[9] Z. Meng, M. Wang and M. Wang, “High performance low temperature metal induced unilaterally crystallized poltcrysatlline silicon thin film transistors for system on panel applications,” IEEE Trans. Electron Devices, 47, NO. 2 (2000).
[10] Z. H. Jin, “Ni induced crystallization of amorphous Si thin films on SiO,” J. Appl. Phys., vol. 84, pp. 194–200, July 1998.
[11] Special issue of Nature, 406, 1021 (2000)
[12] Z. L. Wang, “Characterization of Nanophase Materials,” (2000).
[13] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride nanowires nanodevices,” Nano Lett., 2, 101 (2002).
[14] E. Comini, G. Faglia, and G. Sberveglieri, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts,” Appl. Phys. Lett., 81, 1869 (2002)
[15] J. B. Cui, M. Burghard, and K. Kern, “Room temperature single electron
transistor by local chemical modification of carbon nanotubes,” Nano Lett., 2, 101 (2002).
[16] S. G. Louie, Op. Appl. Phys. 80, 113 (2001)
[17] J. Hu , T. W. Odom and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res., 32, 435 (1999)
[18] Peidong Yang, Yiying Wu, Rong Fan, “Inorganic Semiconductor nanowires’’
International Journal of Nanoscience 1, 1 (2002).
[19] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata and H. Kawakami, “high performance low temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, ED-36, 351 (1989).
[20] M. K. Hatalis and D. W. Greve, “High performance thin film transistors in low temperature crystallized LPCVD amorphous silicon films,” IEEE Electron Devices Lett., EDL-8, 361 (1987).
[21] A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, “Analysis of solid phase
crystallization in amorphized polycrystalline Si films on quartz substrate,” J. Appl. Phys., 66, 4248 (1989).
[22] K. Nakazama, “Recrystallization of amorphous silicon films deposited by low pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys., 69, 1703 (1991).
[23] A. T. Vouttsas and M. K. Hatalis, “Deposition and crystallization of a-Si low pressure chemical vapor deposited films obtained by low temperature pyrolysis of disiline,” J. Electronchem. Soc., 140, 871 (1993).
[24] S. Hasegawa, S. Skamoto, T. Inokuma and Y. Kurata, “structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane,” Appl. Phys. Lett., 62, 1218 (1993).
[25] M. K. Hatalis and D. W. Greve, “Larger grain polrcerstalline silicon by low temperature annealing of low pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., 63, 2260 (1988).
[26] A. Nakamura, F. Emoto, E. Fujii, Y. Uemoto, A. Yamamoto, K. Senda, G. Kano, “Recrystallization mechanism for solid phase growth of poly-Si films on quartz substrate,” Jpn. J. Appl. Phys. Pt. 2, 27, 2408 (1988).
[27] J. H. Kim, J. Y. Lee and K. S. Nam, “High resolution transmission electron microscopy study of solid phase crystallized silicon thin films on SiO2: Crystal growth and defects formation,” J. Appl. Phys., 77, 95 (1995).
[28] M. Miyasaks and J. Stoemenos, “Excimer laser annealing of amorphous and solid phase crystallized silicon films,” J. Appl. Phys., 86, 5556 (1999).
[29] Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline silicon thin films formed by metal induced solid phase crystallization of amorphous silicon,” J. Vac. Sci. Technol. A, 16, 3352 (1998).
[30] G. Radnoczi, A. Robertson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69, 6394 (1991).
[31] J. Stoemenos, J. Mcintosh, N. A. Economou, Y. K. Bhatnagar, P. A. Coxon, A. J. Lowe and M. G. Clark, “Crystallization of amorphous silicon by reconstructive transformation utilizing gold,” Appl. Phys. Lett., 58, 1196 (1991).
[32] B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” J. Appl. Phys., 73, 7402 (1993).
[33] S. W. Lee, Y. C. Jeon and S. K. Joo, “Pd induced crystallization of amorphous Si thin films,” Appl. Phys. Lett., 66, 1671 (1995).
[34] C. D. Lien, M. A. Nicolet and S. S. Lau, “Low temperature formation of NiSi2 from evaporated silicon,” Phys. Status Solidi A, 81, 123 (1984).
[35] Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys., 29, 2698 (1990).
[36] C. Hayzelden, J. L. Batstone, and R. C. Cammarata, ”In situ transmission electron microscopy studies of silicide mediated crystallization of amorphous silicon,” Appl. Phys. Lett., 60, 225 (1992).
[37] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
[38] J. Jang, S. J. Park, K. H. Kim, B. R. Cho, W. K. Kwak, and S. Y. Yoon, “Polycrystalline silicon produced by Ni silicide mediated crystallization of amorphous silicon in an electric field,” J. Appl. Phys., 88, 3099 (2000).
[39] S. Y. Yoon, S. J. Park, K. H. Kim, J. Jang, and C. O. Kim, “Structural and electrical properties of polycrystalline silicon produced by low temperature Ni silicide medicated crystallization of the amorphous phase,” J. Appl. Phys., 87, 609 (2000).
[40] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., 84, 194 (1998).
[41] L. K. Lam, S. Chen, and D. G. Ast, “Kinetics of nickel induced lateral crystallization of amorphous silicon thin film transistors by rapid thermal and furnace anneals,” Appl. Phys. Lett., 74, 1866 (1999).
[42] G. A. Bhat, Z. Jin, H. S. Kwok, and M. Wong, “Performance of thin-film transistors with ultrathin Ni-MILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., 20, 97 (1999).
[43] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
[44] Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials 15, 353 (2003).
[45] Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.; Parter, C. B.
Science 1994, 263, 800.
[46] Y. J. Han, J. M. Kim and G. D. Stucky‚ “ Preparation of Noble Metal Nanowires
Using Hexagonal Mesoporous Silica SBA-15,” Chem. Mater., 12, 2068 (2000).
[47] L. Sun, P. C. Searson, C. L. Chien, “Electrochemical deposition of nickel nanowire arrays in single-crystal mica films,” Appl. Phys. Lett., 74, 2803 (1999).
[48] Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee and S. T. Lee, “Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders,” Chem. Phys. Lett. 314, 16 (1999).
[49] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen and C. L. Bai, “Ordered Ni-Cu Nanowire Array with Enhanced Coercivity,” Chem. Mater. 15, 664 (2003)
[50] H. Cao, Z. Xu, D. Sang, C. Tie, “Template Synthesis and Magnetic Behavior of an Array
of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules,” Adv. Mater. 13, 21 ( 2001)
[51] S. P. Murarka, M. H. Read, C. J. Doherty, D. B. Fraser, “Resistivities of thin film
transition metal silicides,” Electrochem. Soc. 129, 293 (1982)
[52] C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers and D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett., 84, 1389 (2004)
Chapter 3
[1] G. Radnoczi, A. Robertson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69, 6394 (1991).
[2] J. Stoemenos, J. Mcintosh, N. A. Economou, Y. K. Bhatnagar, P. A. Coxon, A. J. Lowe and M. G. Clark, “Crystallization of amorphous silicon by reconstructive transformation utilizing gold,” Appl. Phys. Lett., 58, 1196 (1991).
[3] B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” J. Appl. Phys., 73, 7402 (1993).
[4] S. W. Lee, Y. C. Jeon and S. K. Joo, “Pd induced crystallization of amorphous Si thin films,” Appl. Phys. Lett., 66, 1671 (1995).
[5] C. D. Lien, M. A. Nicolet and S. S. Lau, “Low temperature formation of NiSi2 from evaporated silicon,” Phys. Status Solidi A, 81, 123 (1984).
[6] Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys., 29, 2698 (1990).
[7] C. Hayzelden, J. L. Batstone, and R. C. Cammarata, ”In situ transmission electron microscopy studies of silicide mediated crystallization of amorphous silicon,” Appl. Phys. Lett., 60, 225 (1992).
[8] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide mediated crystallization of nickel implanted amorphous silicon thin films,” J. Appl. Phys., 73, 8279 (1993).
[9] J. Jang, S. J. Park, K. H. Kim, B. R. Cho, W. K. Kwak, and S. Y. Yoon, “Polycrystalline silicon produced by Ni silicide mediated crystallization of amorphous silicon in an electric field,” J. Appl. Phys., 88, 3099 (2000).
[10] S. Y. Yoon, S. J. Park, K. H. Kim, J. Jang, and C. O. Kim, “Structural and electrical properties of polycrystalline silicon produced by low temperature Ni silicide medicated crystallization of the amorphous phase,” J. Appl. Phys., 87, 609 (2000)
[11] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., 84, 194 (1998).
[12] L. K. Lam, S. Chen, and D. G. Ast, “Kinetics of nickel induced lateral crystallization of amorphous silicon thin film transistors by rapid thermal and furnace anneals,” Appl. Phys. Lett., 74, 1866 (1999).
[13] Y. Z. Wang and O. O. Awadelkarim, “Polycrystalline silicon thin films formed by metal induced solid phase crystallization of amorphous silicon,” J. Vac. Sci. Technol. A, 16, 3352 (1998).
[14] E. R. Weber, Appl. Phys. A 30,1(1983)
[15] A. Yu. Kuznetsov a) and B. G. Svensson “Nickel atomic diffusion in amorphous silicon” Appl. Phys. Lett., Vol. 66, No. 17, 24 April( 1995)
[16] S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, Phys. Rev. B 45, 8355 (1992)
Chapter 4
[1] A. M. Morales, C. M. Liber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science , 279, 208 (1998).
[2] Y. Y. Wu, P. D. Yang,“ Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Soc., 123, 3165 (2001).
[3] P. D. Yang and C. M. Liber,“ Nanostructured high-temperature superconductors : Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res., 12, 2981 (1997).
[4] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides
,” Science, 291, 1947 (2001).
[5] Zhang, R. Q.; Lifshiz, Y.; Lee, S. T. ,“Oxide assisted growth of semiconducting nanowires,” Adv. Mater., 15, 637 (2003).
[6] Wang, N.; Zhang, Y. F.; Tang, Y. H.; Lee, C.S.; Lee, S. T.,“SiO2-enhanced synthesis of Si nanowires by laser ablation,”Appl. Phys. Lett., 73, 3902 (1998).
[7] Wu, J. J.; Yu, C. C. J.,“ Aligned TiO2 nanorods and nanowalls,” Phys. Chem. B ,108, 3378 (2004).
[8] Y. D. Yin, D. G.. Zhang, Y. N. Xia, “ Synthesis and characterization of MgO nanowires through a vapor-phase precursor method,” Adv. Mater.,12,293 (2002).
[9] E. I. Givargizov, “Highly anisotropic crystals,” Terra Scientific Publishing, (1986)
[10] D. A. Porter and K. E. Easterling, “Phase transformations in matels and alloys,” Chapman Hall, (1981).
[11] Wang, Q. H.; Sethur, A. A.; Lauerhaas, M. J.; Dai, J. Y.; Seeling, E. W., “A nanotube based field-emission flat panel display,” Appl. Phys. Lett., 72, 2912 (1998).
[12] Au, F. C. K.; Wong, K. W.; Tang, Y. H.; Zhang, Y. F.; Bello, I.; Lee, S. T., “ Electron field emission from silicon nanowires,” Appl. Phys. Lett., 75, 1700 (1999).
[13] Tarntair, F. G.; Wen, C. Y.; Chen, L. C.; Wu, J. –J.; Chen, K. H.; Kuo, P. F.; Chang, S. W.;Chen, Y. F.; Hong, W. K.; Cheng, H. C., “Field emission from quasi-aligned SiCN nanorods,” Appl. Phys. Lett., 76, 2630 (2000).
[14] Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.,“ Field emission from MoO3 nanobelts,” Appl. Phys. Lett., 81, 5048 (2002).
[15] Lee, Y. H.; Choi, C. H.; Jang, Y. T.; Kim, E. K.; Beyeong-kwon; Min, N. K.; Ahn, J. H., “Tungsten nanowires and their field electron emission properties,” Appl. Phys. Lett., 81, 745 (2002).
[16] Li, Y. B.; Bando, Y.; Golberg, D.; Kurashima, K., “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett., 81, 3648 (2002).
[17] Lai, H. L.; Wong, N. B.; Zhou, X. T.; Peng, H. Y.; Au. Frederic C. K.; Wang, N.; Lee, C. S.; Duan, X. F. Appl. Phys. Lett. 1999, 76, 294.
[18] Hsieh, C. T.; Chen, J. M.; Lin, H. H.; Shih, H. C.,“ Field emission from various CuO nanostructures,” Appl. Phys. Lett., 83, 3383 (2003).
[19] Li, Y. B.; Bando, Y.; Golberg, D.,“ MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett., 82, 1962 (2003).
[20] Zhou, J.; Deng, S. Z.; Xu, N. S.;Chen, J.; She, J. C., “Synthesis and field-emission properties of aligned MoO3 nanowires,” Appl. Phys. Lett., 83, 2653 (2003).
[21] Xu, X. C.; Sun, X. W., “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806 (2003).
[22] Xu, X.; Brandes, G. R.,“ A method for fabricating large-area, patterned, carbon nanotube field emitters,” Appl. Phys. Lett., 74, 2549 (1999).
[23] Fowler, R. H.; Nordheim, L. W.; Proc. R. Soc. London, Ser. A 1928, 119, 173.
[24] Gomer, R. Field emission and Field Ionization (Harvard University Press, Cambridge, 1961), P. 195.
[25] Collins, P. G.; Zettl, “Unique characteristics of cold cathode carbon nanotube matrix field emitters,” A. Phys. Rev. B, 55, 9391 (1997).
[26] Lovall, D.; Bass, M.; Graugnard, E.; Andres, R. P.; Reifenberger,“ Electron emission and structural characterization of a rope of single-walled carbon nanotubes,”R. Phys. Rev. B, 61, 5683 (2003).
[27] N. S. Xu, S. Z. Deng and J. Chen, “Nanomaterials for .eld electron emission: preparation, characterization and application,” Ultramicroscopy, 95 ,19 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊