跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:伍得惠
研究生(外文):Te-Hui Wu
論文名稱:自組裝矽鍺氧奈米線網絡與其光學特性之研究
論文名稱(外文):Investigation of Self-assembled Si1-XGex Oxide Nanowire Network and its Optical Characteristics
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Lih-Juann Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:61
中文關鍵詞:矽鍺奈米線發光自組裝
外文關鍵詞:SiGenanowiresCLself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
自我組裝的觀念是近年來備受注目的一種形成奈米尺度材料的方法。因為傳統的光學微影方法對合成奈米尺度的材料已經到了一定的瓶頸, 而自組裝,定義為自動的組織.組成結構而不需要任何人工介入,正是突破這個瓶頸的解決方法之一。此外,一維的奈米發光材料因其在發光元件的進程中所具有之獨特的功能及實用性,亦被廣泛的研究與討論。本篇論文將介紹以自組裝方法形成金顆粒網絡並進一步催化生成發深藍波段光的矽鍺氧奈米線以及其發光機制的探討。
金的奈米顆粒溶於甲苯溶液已經可以穩定的藉由兩相法合成。在合適的溫、溼度下, 將適量溶液滴在五公厘見方的矽鍺晶片上, 自組裝的金蜂巢狀結構便可形成。當我們將此晶片放到氮爐中退火至400 ℃ 並恆溫30 分鐘, 金的蜂巢狀結構開始改變, 金顆粒有向六個蜂巢節點聚集的趨勢。當我們繼續升高溫度至800 ℃ 並恆溫60 分鐘, 所有的金顆粒為了達到最低的表面能,全部都聚結在蜂巢的六角,於是自組裝的六角金顆粒網絡便成型了。
當我們將溫度進一步升溫至1075 ℃,並恆溫10分鐘, 火球狀的矽鍺氧奈米線便被金顆粒催化生成在六角金顆粒上。藉由穿透式電子顯微鏡的觀察及能量散佈光譜儀的分析,在金顆粒表面生成的矽鍺氧奈米線具有非晶質的結構。因為金顆粒直徑約有一微米, 此種結構的成長機制經研判為VLS 及OAG 同時作用。
陰極激發光譜(CL)顯示此種結構會激發出極強的深藍光,尖端波長位於418 nm 的位置。而藉由發光影像製圖,可以發現主要的發光位置和六角狀矽鍺氧奈米線所在的位置相符。換言之, 一個嶄新的自組裝六角發藍光陣列儼然形成。
Honeycomb structure of Au nanoparticles on Si0.8Ge0.2 was drop-cast from the Au nanoparticle solution. Hexagonal networks with discrete Au particles were generated in samples annealed in N2 ambient. For samples held at 1075 ℃ for 10 min, novel fireball-like Si1-xGex oxide nanowire networks were formed. From the transmission electron microscopy observation, the nanowires were found to vary in composition of Si, Ge, O, and to possess an amorphous structure. The growth of Si1-xGex oxide nanowires was proposed to be dominated by vapor-liquid-solid and oxide-assisted-growth mechanisms. Cathodoluminescence (CL) measurements show that the synthesized SixGe1-x oxide nanowires have a strong blue emission peak at 418 nm (2.99 eV ). According to the CL mapping image, it could be found that the main light-emitting positions coincide with the positions of the hexagonal SixGe1-x oxide nanowire networks.
Chapter1 Introduction
1-1 Self-assembly Hexagonal Au Networks......1
1-1-1 Self-assembly………………………………….1
1-1-2 Au Nanoparticles and Au Honeycomb Structure.............3
1-2 Si1-xGex Oxide Nanowires........................4
1-2-1 1D Semiconductor Oxide Nanostructures......4
1-2-2 Silicon OxideNanowires………...........………………..5
1-2-3 Applications of Si1-xGex ………..….…………....…...7
1-2-4 Synthesis Method and Growth Mechanism................9
1-2-4-1 Vapor Phase Evaporation……….....................9
1-2-4-1.2 Vapor-Solid Growth Mechanism.....................9
1-2-4-1.2 Vapor-Liquid-Solid Mechanism…..…..11
1-2-4-1.3 Solution–Liquid-Solid Mechanism …............12
1-2-4-1.4 Oxide-Assisted Nanowire Growth………………..14
1-2-5 Cathodoluminescence (CL) Analysis……………...………15


Chapter 2 Experimental Procedures
2-1 Preparation of Au Nanoparticle Solution.................18
2-2 Sample Preparation.............................19
2-3 Heat Treatments.................................20
2-4 Sample Preparation For Transmission Electron Microscope Observation............................20
2-4-1 Planeview SpecimenPreparation......................20
2-4-2 Cross-Sectional Specimen Preparation.............21
2-5 SEM observation................................22
2-6 Cathodoluminescence (CL) Analysis................23
2-7 TEM observation and EDX analysis......................23


Chapter 3 Results and Discussion
3-1 The Formation of Hexagonal Au Particle Networks............................................24
3-2 Nucleation and Growth of Si1-xGex Oxide Nanowires................................................27
3-2-1 Initial Stage..............................................27
3-3-3 Nanowire growth.............................28
3-3-4 Extended Thermal Annealing....................30
3-3 CL Analysis....................................31

Chapter 4 Summary and Conclusions........33


References........................................36
Figure Captions...............................46
Figures...........................................49
[1] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 271, pp. 933-937 (1996).
[2] Barbara, P. F., “Nanoscale Materials Special Issue,” Acc. Chem. Res., 32, pp. 387 (1999).
[3] A. Thiaville, J. Miltat, “Small is Beautiful,” Science, 284, pp. 1939-1940 (1999).
[4] C. M. Liber, “One-Dimensional Nanostructures: Chemistry, Physics & Applications,” Solid State Commum, 107, pp. 607-616 (1998).
[5] G. M. Whitesides, B. Grzybowski, “Self-assembly at All Scales,” Science, 295, pp. 2418-2421 (2002).
[6] P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang. G. W. Zhou, Z. G. Bai, S. Q. Feng, “Synthesis of Nano-scale Silicon Wires by Excimer Laser Ablation at High Temperature,” Solid State Commun, 105, pp. 403-407 (1998).
[7] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, “Growth of Silicon Nanowires Via Gold/Silane Vapor–Liquid–Solid Reaction,” J. Vac. Sci. Technol. B, 15, pp. 554-557 (1997).
[8] C. P. Li, N. Wang, S. P. Wang, C. S. Lee, S. T. Lee, “Silicon Nanotubes,” Adv. Mater., 14, pp. 1219-1221 (2002).
[9] J. D. Holnecs, K. P. Johnaton, R. C. Doty, B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, pp. 1471-1473 (2000).
[10] L. J. Lauhon, M. S. Gudiksen, C. L. Wang and C. M. Lieber, “Epitaxial Core-Hell And Coreu-Ltishell Nanowire Heterostructures,” Nature, 420, pp. 57-61 (2002).
[11] P. Y. Su, J. C. Hu, S. L. Cheng, and L. J. Chen, “Self-Assembled Hexagonal Au Particle Networks On Silicon From Au Nanoparticle Solution.,” Appl. Phys. Lett. 84, pp. 3480-3482 (2004 ).
[12] J. Fink, C. J. Kiely, D. Bethell, D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10, pp. 922-926 (1998).
[13] C. Stowell and Brian A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1, pp. 595-600 (2001)
[14] J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin, and L. J. Chen, J. Electron. Mater. Inpress, 2004.
[15] M. Maillard, L. Motte, A. T. Ngo, and M. P. Pileni, “ Rings and Hexagons Made of Nanocrystals: A Marangoni Effect,” J. Phys. Chem. B, 104, pp. 11871-11877 (2000)
[16] S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I Vezmar, and R. L. Whetten, “Highly Oriented Molecular Ag Nanocrystal Arrays,” J. Phys. Chem. 100, pp. 13904-13910 (1996)
[17] S. Iijima, “Helical Microtube Of Graphitic Carbon,” Nature 354, pp. 56-58 (1991).
[18] (a) Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities,” Adv. Mater. 12, pp. 1295-1298 (2000). (b) J. Hu, T. W. Odom, C. M. Liber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc Chem. Res. 32, pp. 435-445 (1999).
[19] Z. L. Wang, Z. C. Kang, “Functional and Smart Materials,” Plenum, New York (1998).
[20] Z. R. Dai, Z. W. Pan, Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater. 13, pp. 9-24 (2003).
[21] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence From Defect Centers In High-Purity Silica Glasses Observed Under 7.9-eV Excitation,” Phys. Rev. B 45, pp. 586-591 (1992).
[22] L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. B. Min, “Blue Luminescence From Si + -Implanted SiO2 Films Thermally Grown On Crystalline Silicon.,” Appl. Phys. Lett. 68, pp. 850-852 (1996).
[23] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, pp. 3076-3078 (1998).
[24] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, And D. R. M. Walton, “3d Silicon Oxide Nanostructures: From Nanoflowers To Radiolaria,” J. Mater. Chem. 8, pp. 1859-1864 (1998).
[25] Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou, and G. Wang, “Synthesis Of Α-SiO2 Nanowires Using Au Nanoparticle Catalysts On A Silicon Substrate,” J. Mater. Res., 16, pp. 683-686 (2001).
[26] L. Skuja, “Optically Active Oxygen-Deficiency-Related Centers In Amorphous Silicon Dioxide,” J. Non-Cryst. Solids, 239, pp. 16-48 (1998).
[27] J. D. Cressler, “SiGe HBT Technology: A New Contender For Si-based RF And Microwave Circuit Applications,” IEEE Trans. Microwave Theory Tech., 46, pp. 572-589 (1998).
[28] T. J. King, K. C. Saraswat “A Variable-Work-Function Polycrystalline-Si1-XGex Gate Material For Submicrometer CMOS Technologies,” IEEE Electron Device Lett., 12, pp. 533-535 (1991).
[29] T. J. King, J. R. Pfiester and K. C. King, “PMOS Transistor In LPCVD Polycrystalline Silicon-Germanium Films,” IEEE Electron Device Lett. EDL-12 pp.584-586 (1991)
[30] S. P. Ashburm and M. C. Öztürk, “Phase Transtions During Solid-Stae Formation Of Cobalt Germanide By Rapid Thermal Annealing,” J. Appl. Phys., 74, pp. 4455-4460 (1993).
[31] J. von Borany, R. G�嫪tschel, K.H. Heinig, A. Markwitz, W. Matz, B. Schmidt, W. Skorupa, “Multimodal Impurity Redistribution And Nanocluster Formation In Ge Implanted Silicon Dioxide Films,” Appl. Phys. Lett. 71, pp. 3215-3217 (1997)
[32] C.G. Askins, G. Pacchioni, L. Skuja, D.L. Griscom, “Defects in SiO2 and Related Dielectrics,” Science and Technology Kluwer Academic, Dordrecht, pp. 529-526 (2000).
[33] R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, pp. 89-90 (1964).
[34] A. M. Mporales and C. M. Liber, “A Laser Ablation Method For The Synthesis Of Crystalline Semiconductor Nanowires,” Science 279, pp. 208-211 (1998).
[35] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, pp. 1897-1899 (2001).
[36] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12, pp. 746-750 (2000).
[37] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, and J. J. Du, “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters”, Chem. Phys. Lett. 328, pp. 5-9 (2000).
[38] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts Of Semiconducting Oxides,” Science, 291, pp. 1947-1949 (2001).
[39] Brenner, S.S. and G. W. Sears, “Mechanism of Whisker Growth-III Nature of Growth Sites,” Acta Met. 4, pp. 268-270 (1956).
[40] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang, and S.Q. Feng, “Ga2O3 Nanowires Prepared By Physical Evaporation,” Solid State Comm. 109, pp. 677-682 (1999).
[41] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth Of Crystalline III-V Semiconductors: An Analogy To Vapor-Liquid-Solid Growth,” Science 270, pp. 1791-1794 (1995).
[42] X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, pp. 93-99, (2003).
[43] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth.,” Adv. Mater. 15, pp. 635-640 (2003).
[44] W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123, pp. 11095-96 (2001).
[45] S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure And Properties”, Mater. Sci. Eng. A 286, pp. 16-23 (2000); N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown From Silicon Oxide,” Chem. Phys. Lett. 299, pp. 237-242 (1999).
[46] N. Savage, “LEDs Light the Future, Technology Review,” MITs Magazine of Innovation, September/October (2000).
[47] A Bierman, “LEDs: From Indicators To Illumination?” Lighting Futures, 3 (4), Troy, NY: Rensselaer Polytechnic Institute, Lighting Research Center, 1998. (Available on the Web at: http://www.lrc.rpi.edu/Futures/LF-LEDs/index.html)
[48] S. J. Matthews, “Between Darkness And Light,” Laser Focus World, 36, Issue 6 (2000). (Available on the Web at: http://lfw.pennnet.com/Articles/Article_Display.cfm?Section=ARCHI&ARTICLE_ID=75501&VERSION_NUM=1&p=12)
[49] S. J. Matthews, “Blue Horizons,” Laser Focus World, 36, Issue 7 (2000).
[50] Brust, M., Walker, M.; Bethell, D., Schiffrin, and D. J., Whyman, R., “Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid/Liquid System,” J. Chem. Soc., Chem. Commun. pp. 801-805 (1994).
[51] Murray, C. B.; Norris, D. J.; Bawendi, M. G. “Synthesis And Characterization Of Nearly Monodisperse Cde (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115, pp. 8706-8715 (1993)
[52] T. T. Sheng and C. C. Chang, “Transmission Electron Microscipy Of Cross Section of Large Scale Integrated Circuits,” IEEE Trans, Electron Devices, ED-23, pp. 531-553 (1976).
[53] J. Luo, V. W. Jones, M. M. maye, L. Han, N. N. Kariuki, and C. J. Zhong, “Thermal Activation of Molecularly-Wired Gold Nanoparticles on a Substrate as Catalyst,” J. Am. Chem. Soc. 124, pp. 13988-89 (2002)
[54] J. N. O’Shea, M.A. Philips, M.D.R. Taylor, P. Moriarty, M. Brust, and V.R. Dhanak, “Colloidal Particle Foams: Templates For Au Nanowire Networks? ” Appl. Phys. Lett. 81, pp. 5039-5041 (2002)
[55] C. R. Chen and L. J. Chen, “Structural Evolution And Atomic Structure Of Ultrahigh Vacuum Deposited Au Thin Films On Silicon At Low Temperatures,” Appl. Sur. Sci. 92, pp. 507-511 (1996).
[56] W. C. A. N. Ceelen, M. de Ridder, B. Moest, A.W. Denier van der Gon, H. H. Brongersma, “Morphology And Composition Of Au Films on Si(100) ,” Sur. Sci. 430, pp. 146-153 (1999).
[57] E.R. Weber, “In Properties of Silicon,” edited by J. Sears (INSPEC, The Institution of Electrical Engineers), London (1988).
[58] Roland Fischer, Werner F.J. Frank, and Klara Lyutovich “Diffusion Of Gold In Relaxed Si-Ge Epi-Layers.” Physica B, 273, pp. 598-602 (1999).
[59] David R. “CRC Handbook of Chemistry and Physics,” 83rd, edition, 2002-2003.
[60] M. A. Stevens Kalceff, “Cathodoluminescence Microcharacteriza-
tion of the Defect Structure of Irradiated Hydrated and Anhydrous Fused Silicon Dioxide,” Phys. Rev. B 57, pp. 5674-5683 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top