跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王致傑
研究生(外文):Ji-Jay Wang
論文名稱:二氧化鈦奈米管之製備及其場發射性質之研究
論文名稱(外文):preparation and field emission property of TiO2 nanotubes
指導教授:彭宗平彭宗平引用關係
指導教授(外文):Tsong-Pyng Perge
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:98
中文關鍵詞:二氧化鈦奈米管場發射滲雜
外文關鍵詞:TiO2nanotubesfield emissiondoping
相關次數:
  • 被引用被引用:3
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
摘要

自從1991年Ijima 發現奈米碳管以來,由於它在光、電、機械上優異的特性,科學家也開始對不同材料的奈米管結構進行探討,期望能發現一些獨特且令人驚訝的性質。1972年Fujishima 和 Honda發現二氧化鈦具有光觸媒效果,此後開啟了TiO2的研究熱潮。本研究利用迴流方式製備出二氧化鈦奈米管,經由控制溫度、時間和酸鹼度等變數,得到不同形態的二氧化鈦奈米結構,也確立形成奈米管最佳條件,由此推測其形成機制。另外,利用奈米球和奈米管兩種不同形態的二氧化鈦來進行吸收光譜和PL光譜的量測,發現奈米管的吸收光譜約在400nm,奈米球約在320nm;在PL的光譜,奈米管之發光強度較奈米球強。此外,為了提升其導電度,並探討其場發射性質,亦對二氧化鈦奈米管進行成分修飾,分別摻入Fe0.025mol%和Nb 0.025mol%,摻雜之奈米管經由吸收光譜鑑定發現,兩者波長會隨摻入濃度上升而往長波長移動;量測場發射的性質發現,滲雜Fe之奈米管其場發射性質較滲雜Nb原子佳。簡言之,本研究著重於二氧化鈦奈米管光電應用之研究。
Abstract

Since Fujishima and Honda discovered the photocatalytic property of TiO2 in 1972, extensive research has been conducted. In this study, nanostructured titania was prepared by a reflux method. Both nanoparticles and nanotubes were obtained by this method. Several experimental parameters were controlled, such as temperature, reaction time and pH value, to better understand the formation mechanism of titania nanotubes and to get the best synthesis condition. In addition, PL and UV-absorption spectra were measured for nanoparticle and nanotube samples. It is seen that the nanotube has an absorption peak at 400nm, different from that of the particle. For the PL measurement, the intensity of nanotubes is stronger than that of particles. In order to improve the conductivity and field emission property, two metal ions, Fe and Nb, were doped into titania nanotubes to make p- and n-type semiconductor, respectively. The absorption edge was shifted to longer wavelength when the doping concentration increases. For pure TiO2 nanotubes field emission properties were not observed. The turn on field, of 0.025mol% Nb and Fe doped TiO2 nanotubes are 23 and 12 V/μm, respectively, with the defined current density at 0.01mA/cm2. The electronic and photonic properties of TiO2 nanotubes are discussed on the basis of nanostructure and doping composition.
Table of Contents
中文摘要
Abstract
誌謝
Chapter I Introduction 1
1. Nanosized materials 1
2. Applications of nanomaterials 3
3. Preparation of nanostructured materials 3
4. 1-D nanomaterials 4
5. Nanostructures of TiO2 4
Chapter II Literature Review 7
1. The structures of TiO2 7
2. Photocatalysis of TiO2 9
3. Preparation of TiO2 nanotubes 12
A. Template method 12
B. Sol-gel method 12
C. Sonochemistry method 16
D. Reflux method 17
E. Hydrothermal method 17
4. Doping 20
A. Doping with positive ion 21
B. Doping with negative ion 21
C. Chemical method 23
(1) Co-precipitation 23
(2) Sol-gel method 23
D. Calcination at high temperature 23
E. Sputtering 24
5. Field emission 25
A. The electron field emission theory of metals 25
B. The electron field emission theory of
semiconductors 28
(1) Emission from valence band 28
(2) Emission from conduction band 30
Chapter III Experimental Procedures 34
1. Preparation of TiO2 nanotubes 34
2. Preparation of ion-doped TiO2 nanotubes 38
3. Characterization of the nanotubes 40
A. X-ray diffraction 40
B. Field emission scanning electron microscopy 42
C. Trasmission electron microscopy 42
D. UV-visible spectroscopy 42
E. Photoluminescence 43
F. Field emission 42
G. ICP-AES 43
Chapter IV Results and Discussion 45
1. Synthesis of TiO2 nanotubes 45
A. Temperature effect 45
B. Reaction time effect 52
C. Base concentration effect 52
D. Precursor concentration effect 57
E. Stirring effect 64
F. Acid treatment 64
2. TEM analysis 68
3. UV-visible spectra 68
4. PL spectra 72
5. Doped TiO2 nanotubes 72
A. Fe-doped TiO2 79
B. Nb-doped TiO2 83
6. Field emission 83
A. Field emission characteristics of TiO2 nanotubes 83
B. Field emission characteristics of Nb-doped TiO2
nanotubes 83
C. Field emission characteristics of Fe-doped TiO2
nanotubes 84
7. The growth mechanism of TiO2 nanotubes 92
Chapter V Conclusions 93
References 94
References

1. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, and P. Yang, Science, 2001, 292, 1897.
2. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science, 2001, 293, 2227.
3. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 2001, 293, 1289.
4. E. Wong, quoted by R.S. Boyd, Knight Rider Newspapers, Kansas City Star, Monday, November 8, 1999.
5. L. F. Chi, M. Hartig, T. Drechaler, Th. Schwaack, and G. Schmid, Appl. Phys. A., 1998, A66, 187.
6. S. J. Fonash, Z. Li, and M. J. O,Leary, J. Appl. Phys., 1985, 58, 4415.
7. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuator B, 1991, 3, 147.
8. H. M. Lin, T. Y. Hsu, C. Y. Tung, and C. M. Hsu, Nanostruct. Mater., 1995, 6, 1001.
9. H. P. Wu, A. Okano, and K. Takayanagi, Appl. Phys. A., 2001, 71, 643.
1 0. K. H. Chae, J. H. Son, G. S. Chang, H. B. Kim, J. Y Jeong, S.Im, J. H. Song, K. J. Kim, and C. N. Whang, NanoStruct. Mater., 1999, 11, 1239.
1 1. C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, and S. T. Lee, J. Cryal Growth, 2000, 220, 446.
1 2. R. W. Siegel, Mater. Sci. Eng., 1993, A168, 189.
1 3. T. Hunag and R. W. Murry, J. Phys. B., 2001, 105, 12498.
1 4. Z. X. Tang, C. M. Sorenson, K. J. Klabundle, and G. C. Hadjipanayis, J. Colloid Interface Sci., 1991, 146, 38.
1 5. L. Zhang and J. L. Coffer, J. Sol-Gel Science and Tech., 1998, 11, 267.
1 6. D. Das, J. Farjas, P. Roura, G. Viera, and Bertran, Appl. Phys. Lett., 2001, 79, 3705.
1 7. D. B. Mawhiney, J. A. Glass, Jr., and J. T. Yates, Jr., J. Phys. Chem. B, 1997, 101, 1202.
1 8. Z. Mouffak, H. Aourag, J. D. Moreno, and J. M. Martinezduart, Microelectronic Eng., 1998, 43, 655.
1 9. Z. L. Wang, Adv. Mater., 2000, 12, 1295.
2 0. D. J. Sellmyer, M. Zheng, and R. Skomki, J. Phys. Condens. Mater., 2001, 13, R433.
2 1. S. Matsui and Y. Ochiai, Nanotechnology, 1996, 7, 247.
2 2. M. D. Levenson, Solid State technol., 1995, Sep., 81.
2 3. E. Olson, G. C. Spalding, A. M. Goldman, and M. J. Rooks, Appl. Phys. Lett., 1994, 65, 2740.
2 4. T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Burhro, Science, 1995, 270, 1791.
2 5. X. F. Duan and C. M. Leiber, Adv. Mater., 2000, 12, 298.
2 6. J. R. Heath and F. K. LeGoues, Chem. Phys. Chem., 1993, 208, 263.
2 7. A. Fujishima and K. Honda, Nature, 1972, 238, 37.
2 8. R. Wang, K.Hashimoto, and A. Fujishima, Nature, 1997, 388, 431.
2 9. N. Herron, Chem. Technol., 1989, 542.
3 0. R. Cai, T. Shuin, and A. Fujishima, Cancer Res., 1992, 52, 2346.
3 1. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. Chem. Rev., 1995, 95, 735.
3 2. J. Kiwi and M. Gratzel, J. Phys. Chem., 1981, 85, 592.
3 3. S. Iijima, Nature, 1991, 354, 56.
3 4. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett., 2002, 2, 427.
3 5. Y. Sun, B. T. Mayers, and Y. Xia, Nano lett., 2002, 2, 481.
3 6. X. Wen and S. Yang, Nano lett., 2002, 2, 451.
3 7. Y. Sun, and B. T. Mayers, Adv. Mater. 2003, 4, 678.
3 8. J. Kiwi and M. Gratzel, Angew. Chemie. Int. Ed. Engl., 1979, 18, 624.
3 9. C. A. Grimes, K. H. Ong, and O. K. Varghese, Sensors, 2003, 3, 69.
4 0. P. Hoyer, Langmuir, 1996, 12, 1411.
4 1. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, and H. Shirai, Chem. Mater., 2000, 12, 1523.
4 2. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir, 1998, 14, 3160.
4 3. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater., 1999, 11, 1307.
4 4. B. Q. Chen, W. Zhou, G. Du, and L.M. Peng, Adv. Mater., 2002, 14, 1208.
4 5. Z. Y. Yuan, W. Zhou, and B. L. Su, Chem.Com., 2002, 1202.
4 6. Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacochen, and A. Gedanken, Chem.Com., 2001, 2616.
4 7. D. S. Seo, J. K. Lee, and H. Kim, J. Cry. Growth, 2001, 229, 428.
4 8. Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, Chem. Phys. Lett., 2002, 365, 300.
4 9. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M Reng, Appl. Phys. Lett., 2002, 79, 3702.
5 0. C. Burda, Y. Lou, X. Chen, A. S. Samia, J. Stout, and J. L. Gole, Nano Lett., 2003, 3, 1049.
5 1. K. E. Karakitsou and X. E. Verykios, J. Phys. Chem., 1993, 97, 1184.
5 2. Wonyong Choi, Andreas Termin, and Michaelv R. Hoffann, J. Phys. Chem., 1994, 98, 13669.
5 3. J. A. Navio, M. Macias, M. G. Catalan, and A. Justo, J. Mater. Science, 1992, 3036.
5 4. N. Serpone and D. Lawless, Langmuir, 1994, 10, 643.
5 5. K. Wilke and H.D. Breuer, J. Photochem. and Photobio. A: Chem., 1999, 121, 49.
5 6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 2001, 293, 296.
5 7. T. Umebayashi, App. Phys. Lett., 2002, 81, 454.
5 8. J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J. R. Morante, J. Appl. Phys., 2002, 92, 853.
5 9. P. Yang, M. Lu, and D. Xu, J. Phys. Chem. Solids, 2001, 62, 11810.
6 0. R. F. Sliva and M. Zaniquelli, Thin Solid Films, 2004, 1, 86.
6 1. M. H. Wang, R. J. Guo, T. L. Tso, and T. P. Perng, Int. J. Hydrogen Energy, 1995, 20, 555.
6 2. L. M. Gao, X. Y. Zhang, and C. X. Gao, Nanotech., 2003, 14, 931.
6 3. F. Priolo, G. Franzo, and D. Pacifici, J. Appl. Phys., 2001, 89, 264.
6 4. X. Li, P. L. Yue, and C. Kutal, New J. Chem., 2003, 27, 1264.
6 5. S. C. Kung, and K. S. Hung, Master thesis in NTHU, 2001.
6 6. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
6 7. C. X. Xu and X. W. Sun, Appl. Phys. Lett., 2003, 83, 3806.
6 8. C. J. Lee, T. J. Lee, S. C. Lyu, and Y. Zhang, Appl. Phys. Lett.,2002, 81, 3684.
6 9. C. T. Hsiao, and J. M. Chen, Appl. Phys. Lett.,2003, 83, 3383.
7 0. K. D. Schierbaum, S. Fischer, P. Wincott, P. Hardman, V. Dhanak, G. Jones, and G. Thornton, Surface Science, 1997, 391, 196.
7 1. J. Chen, S. Z. Deng, and N. S. Xu, Appl. Phys. Lett., 2003, 83, 746.
7 2. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett., 2004, 84, 1540.
7 3. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, and I. C. Chen, Adv. Funct. Mater., 2003, 13, 811.
7 4. F. C. Frederick, K. W. Wong, Y. H. Tang, Y. F. Zhang, and S. T. Lee, Appl. Phys. Lett., 1999, 12, 1700.
7 5. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett.,2002, 81, 5048.
7 6. R. S. Chen, Y. S. Hung, Y. M. Liang, C. S. Hsieh and K. K. Tiong, Appl. Phys. Lett., 2004, 84, 1552.
7 7. J. Zhou, S. Z. Deng, N. S. Xu, and J. C. She, Appl. Phys. Lett., 2003, 83, 2653.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊