跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱旭鋒
研究生(外文):Hsu-Feng Chiu
論文名稱:自組裝銀顆粒及氧化鋅奈米線成長研究
論文名稱(外文):Self-Assembled Ag Particles on Si0.8Ge0.2 and Growth of ZnO Nanowires
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Lih-Juann Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:123
中文關鍵詞:自組裝氧化鋅奈米線矽化鍺
外文關鍵詞:self-assembledAgZnOnanowiresSiGe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

自組裝所形成的圖案可以取代光罩並由此定點成長一維奈米材料。隨著通訊及光電科技的發展,矽鍺和氧化鋅研究受到極大重視。本研究利用掃描式電鏡(SEM)與穿透試電鏡(TEM)探討矽鍺基材上自組裝銀粒及氧化鋅奈米線成長。
用自組裝方式生成之試片經過退火後,由SEM觀察到銀逐漸沈入矽鍺基材料,其中小粒子銀下沈的速度比大粒子銀快。在800 °C退火90分鐘後之試片中,觀察到大顆粒銀的周圍有許多小顆粒銀的存在。由TEM的觀察結果顯示,有氧化層覆蓋在銀粒子上,較小粒的銀被包覆在氧化層中,並發現銀並不和矽鍺反應形成化合物。由此推知銀結構是藉由形成的氧化層穩定銀顆粒。
催化劑會影響氧化鋅的成長,其他的條件如氧化鋅和碳的比例、成長溫度、成長時間、成長壓力、粉末的用量都會影響氧化鋅奈米線的成長。粉末的重量影響成長時鋅的濃度。鋅濃度高導致快速的成長。氧化鋅奈米線的成長是藉由蒸氣-液滴-固體機制。隨著時間增加,長度變長,而氣流量少使過飽鋅少而降低氧化鋅的成長。
在氧化鋅和碳比例為1、溫度690 °C、持溫90分鐘、固定的氣流 (氬氣25 sccm,氧氣5 sccm) ,壓力為1.5 Torr,鍍金做為催化劑的條件時,發現特殊的奈米鑽頭結構在基材上成長。
奈米鑽頭的寬約為10至150奈米,長約為1至2微米,從高分辨TEM可清楚的看出中心和外殼不同的結構。中心層為氧化鋅而外殼為鋅,沒有非晶層存在於二者之間。實驗結果顯示鋅的濃度影響成長速率而產生不同的形態的氧化鋅奈米線。
Abstract

Self-assembled Ag particles on Si0.8Ge0.2 and the growth of ZnO nanowires have been investigated.

Self-assembled method is utilized for the formation of surface structure of Ag nanoparticles on Si0.8Ge0.2. The surface reaction was induced in a furnace with N2 flowing. The resulting surface structure of Ag on SiGe was characterized by scanning electron microscopy (SEM), energy dispersion spectrometer (EDS), and transmission electron microscopy (TEM).

Ag atoms were observed to segregate to the node points of the honeycomb structure after annealing at 800 °C for 90 min. It was found that the Ag particles gradually sank into SiGe substrate. Small particles were found to permeate faster than large particles. Cross-sectional TEM image showed that there is an oxide film covering Ag particles. Small particles are sometimes embedded in the oxide layer. The observation indicated that Ag did not react with SiGe to form compounds. The formation of an oxide layer was found to stabilize the Ag particles.

The growth of ZnO nanowires was found to depend on the catalysis of Au particles. Factors such as ZnO/C ratio, temperature, growth time, pressure of O2, amount of Zn vapor and catalyst, have been varied to investigate their effects on the growth. The resulting nanowires were characterized by SEM, TEM, and high-resolution transmission electron microscopy (HRTEM).

The quantity of ZnO and C affects the concentration of Zn vapor to grow. A high concentration of Zn leads to faster growth. The nanowires were grown via a vapor-liquid-solid growth mechanism. ZnO nanowires grew in length with holding time. For low gas flow, the nanowires were grown under low supersaturation.

For samples prepared with ZnO/C ratio equaling 1 (3.33 g ZnO and 0.5 g C), the temperature 690 °C, holding time 90 min, a constant flow of Ar (25 sccm) and O2 (5 sccm), P equaling 1.5 Torr, with deposited Au as catalyst, ZnO nanodrills were grown on the substrate. The nanodrills are about 10 to 150 nm in average diameter and 1 to 2 micrometers in length. From the HRTEM image of ZnO nanodrills, core-shell structure is evident in the sample. The core and shell were found to be ZnO and Zn. No amorphous material is present at the interface. The results clearly showed that the concentration of Zn affects the growth rate to produce different kinds of ZnO nanowires.
part1
References

【1】 T. Sato, H. Ahmed, D. Brown, and B. F. G. Johnson, “Single Electron Transistor using a Molecularly Linked Gold Colloidal Particle Chain,” J. Appl. Phys. 82, 696-701 (1997)

【2】 C. J. Zhong and M. M. Maye, “Core-Shell Assembled Nanoparticles as Catalysts,” Adv. Mater. (Weinheim, Ger.) 13, 1507-1511 (2001)

【3】 C. C. Lin, Y. C. Yeh, C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen, and Y. C. Wu, “Selective Binding of Mannose Encapsulated Gold Nanoparticles on Type 1 Pili in Escherichia coli,” J. Am. Chem. Soc. 124, 3508-3509 (2002)

【4】 A. Courty, C. Fermon, and M. P. Pileni, “Supra Crystals Made of Nanocrystals,” Adv. Mater. (Weinheim, Ger.) 13, 254-258 (2001)

【5】 C. B. Murray, S. Sun, H. Doyle, and T. Betley, “Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices,” MRS Bull. 26, 985-991 (2001)

【6】 C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277, 1978-1981 (1997)

【7】 J. Fink, C. J. Kiely, D. Bethell, and D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10, 922-926 (1998)

【8】 C. Stowell and Brian A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1, 595-600 (2001)


【9】 J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lu, and L. J. Chen, “Growth of Novel Nanostructures on Self-Assembled Hexagonal Au Particle Networks,” J. Electron. Mater. (2004, is press)

【10】 Brian A. Korgel and Donald Fitzmaurice, “Small-angle x-ray-scattering Study of Silver-nanocrystal Disorder-order Phase Transitions,” Phys. Rev. B 59, 14191-14201 (1999)

【11】 G. M. Whitesides and B. Graybowski, “Self-Assembly at All Scales,” Science 295, 2418-2421 (2002)

【12】 C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105, 5599-5611 (2001)

【13】 Y. C. Peng, C. R. Chen, and L. J. Chen, “Improvement of the Morphological Stability of Ag Film on ( 001 ) Si with a Thin Interposing Au Layer,” J. Mate. Res. 13, 90-93 (1998)

【14】 A. Nishiyama, G. ter Horst, P. M. Zagwijn, G. N. van den Hoven, J. W. M. Frenken, F. Garten, A. R. Schlatmann, and J. Vrimoeth, “Growth Mode and Interface Structure of Ag on the HF-treated Si (111) : H Surface,” Surface Science 350, 229-238 (1996)

【15】 Zhengxin Liu and Honghong Wang, “Annealing Behaviour of c-SiO2 Implanted Layer Distributed with High Density Ag Nanoparticles,” Nucl. Inst. Meth. Phys. Res. B 122, 45-50 (1997)

【16】 G. W. Arnold and J. A. Borders, “Aggregation and Migration of Ion-implanted Silver in Lithia-alumina-silica Glass,” J. Appl. Phys. 48, 1488-1496 (1977)

【17】 A. E. Hughes and S. C. Jain, “Metal Colloids in Ionic Crystals,” Adv. Phys. 28, 717-828 (1979)
【18】 M. A. Smithard and M. Q. Tran, “The Optical Absorption Produced by Small Sodium Metal Particles in Sodium Chloride,” Helv. Phys. Acta. 46, 869-888 (1974)

【19】 J. D. Cressler, “SiGe HBT Technology : a New Contender for Si-Based RF and Microwave Circuit Applications,” IEEE Trans. Microwave Theory Tech. 46, 571-589 (1998)

【20】 T. J. King, K. C. Saraswat, and J. R. Pfiester, "PMOS transistors in LPCVD polycrystalline Silicon-germanium Films," IEEE Electron Device Letters 12, 584-586 (1991)

【21】 T. J. King and K. C. Saraswat, “A Low-temperature (
【22】 T. J. King, J. R. Pfiester, J. D. Shott, J. P. McVittie, and K. C. Saraswat, “A Polycrystalline-Si1-xGex-gate CMOS Technology,” IEDM 90, 253-256 (1990)
【23】 林滿玉,國立清華大學材料科學工程學系碩士論文 (2003)

【24】 P. Y. Su, J. C. Hu, S. L. Cheng, and L. J. Chen, “Self-assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phys. Lett. 84, 3480-3482 (2004)

【25】 陳懷宗,國立清華大學材料科學工程學系碩士論文 (2002)

【26】 Parag S. Shah, Michael B. Sigman, Jr., Cynthia A. Stowell, Kwon T. Lim, Keith P. Johnston, and Brian A. Korgel, “Single-Step Self-Organization of Ordered Macroporous Nanocrystal Thin Films,” Adv. Mater. 15, 971-974 (2003)

【27】 J. Luo, V. W. Jones, M. M. Maye, L. Han, N. N. Kariuki, and C. J. Zhong, “Thermal Activation of Molecularly-Wired Gold Nanoparticles on a Substrate as Catalyst,” J. Am. Chem. Soc. 124, 13988-13989 (2002)

【28】 J. N. O’Shea, M. A. Philips, M. D. R. Taylor, P. Moriarty, M. Brust, and V. R. Dhanak, “Colloidal Particle Foams: Templates for Au Nanowire Networks,” Appl. Phys. Lett. 81, 5039-5041 (2002)

【29】 Reinhard Lipowsky, Peter Lenz, and Peter S. Swain, “Wetting and Dewetting of Structured and Imprinted Surfaces,” Coll. Surf. 161, 3-22 (2000)

【30】 C. R. Chen and L. J. Chen, “Structural Evolution and Atomic Structure of Ultrahigh Vacuum Deposited Au Thin Films on Silicon at Low Temperatures,” Appl. Sur. Sci. 92, 507-512 (1996)

【31】 M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, “Influence of Misfit Dislocations on the Surface Morphology of Si1-xGex Films,” Appl. Phys. Lett. 66, 724-726 (1995)

【32】 M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, and H. P. Strunk, “Surface Ripples, Crosshatch Pattern, and Dislocation Formation: Cooperating Mechanisms in Lattice Mismatch Relaxation,” Appl. Phys. Lett. 67, 1232-1234 (1995)

【33】 H. Chen, Y. K. Li, C. S. Peng, H. F. Liu, Y. L. Liu, Q. Huang, and J. M. Zhou, “Crosshatching on a SiGe Film Grown on a Si(001) Substrate Studied by Raman Mapping and Atom Force Microscopy,” Phys. Rev. B 65, 233303-1-233303-4 (2002)

【34】 I. Berbezier, A. Ronda, F. Volpi, and A. Portavoce, “Morphological Evolution of SiGe Layers,” Sur. Sci. 531, 231-243 (2003)



part2

References

【1】 Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, “Plasma Assisted Molecular Beam Epitaxy of ZnO on c-plane Sapphire: Growth and Characterization,” J. Appl. Phys. 84, 3912-3918 (1998)

【2】 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films,” Appl. Phys. Lett. 72, 3270-3272 (1998)

【3】 D. C. Reynolds, D. C. Look and B. Jogai, “Optically Pumped Ultraviolet Lasing from ZnO,” Solid State Commun. 99, 873-875 (1996)

【4】 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically Pumped Lasing of ZnO at Room Temperature,” Appl. Phys. Lett. 70, 2230-2232 (1997)
【5】 曾永寬,國立清華大學材料科學與工程學系博士論文 (2003)

【6】 http://oxide.rlem.titech.ac.jp/Kawasaki/ZnO/ZnO.htm

【7】 S. Bethke, H. Pan, and B. W. Wessels, “Luminescence of Heteroepitaxial Zinc Oxide,” Appl. Phys. Lett. 52, 138-140 (1988)

【8】 H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO Films Grown on GaN Templates by Plasma-Assisted Molecular-Beam Epitaxy,” Appl. Phys. Lett. 77, 3761-3763 (2000)

【9】 Xin-Li Guo, Hitoshi Tabata, and Tomoji Kawai, “Epitaxial Growth and Optoelectronic Properties of Nitrogen-doped ZnO Films on (11-20) Al2O3 Substrate,” Journal of Crystal Growth 237, 544-547 (2002)

【10】 Manabu Komatsu, Naoki Ohashi, Isao Sakaguchi, Shunichi Hishita, and Hajime Haneda, “Ga, N Solubility Limit in Co-Implanted ZnO Measured by Secondary Ion Mass Spectrometry,” Applied Surface science 189, 349-352 (2002)

【11】 Hiromichi Ohta, Masahiro Orita, Masahiro Hirano, and Hideo Hosono, “Fabrication and Characterization of Ultraviolet-Emitting Diodes Composed of Transparent p-n Heterojunction, p-SrCu2O2 and n-ZnO,” J. Appl. Phys. 89, 5720-5725 (2001)

【12】 Michael S. Arnold, Phaedon Avouris, Zheng Wei Pan, and Zhong L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003)

【13】William L. Hughes and Zhong L. Wang, “Nanobelts as Nanocantilevers,” Appl. Phys. Lett. 82, 2886-2888 (2003)

【14】 R. S Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Sigle Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964)

【15】 Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, “Synthesis and Optical Properties of Tetrapod-like Zinc Oxide Nanorods,” Chem. Phys. Lett. 358, 83-86 (2002)

【16】 Peter A. Smith, Christopher D. Nordquist, Thomas N. Jackson, Theresa S. Mayer, Benjamin R. Martin, Jeremiah Mbindyo, and Thomas E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77, 1399-1401 (2000)

【17】 Jin-Ho Choy, Eue-Soon Jang, Jung-Hee Won, Jae-Hun Chung, Du-Jeon Jang, and Young-Woon Kim, “Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Water; Room-Temperature Ultraviolet Laser,” Adv. Mater. 15, 1911-1914 (2003)
【18】 Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001)

【19】 J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “Ga-Doped ZnO Single-Crystal Nanotips Grown on Fused Silica by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 83, 3401-3403 (2003)


【20】 Seung Chul Lyu, Ye Zhang, Cheol Jin Lee, Hyun Ruh, and Hwack Joo Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method,” Chem. Mater. 15, 3294-3299 (2003)

【21】 S. C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Hyun-WookShim, Eun-Kyung Suh, and Cheol Jin Lee, “Low Temperature Growth and Photoluminescence of Well-Aligned Zinc Oxide Nanowires,” Chem. Phys. Lett. 363, 134-138 (2002)

【22】 P. X. Gao, Y. Ding, and Z. L. Wang, “Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst,” Nano Lett, 3, 1315-1320 (2003)

【23】 M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-Assembly of Well-Aligned Gallium-Doped Zinc Oxide Nanorods,” J. Appl. Phys. 94, 5240-5246 (2003)

【24】 P. Yang, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Func. Mater. 12, 323-331 (2002)

【25】 Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Func. Mater. 13, 811-814 (2003)

【26】 W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yia, “Metalorganic Vapor-Phase Epitaxial Growth of Vertically Well-Aligned ZnO nanorods,” Appl. Phys. Lett. 80, 4232-4234 (2002)

【27】 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature,” Appl. Phys. Lett. 81, 3648-3650 (2002)

【28】 D. Banerjee, J. Y. Lao, D. Z. Wang, J. Y. Huang, Z. F. Ren, D. Steeves, B. Kimball, and M. Sennett, “Large-Quantity Free-Standing ZnO Nanowires,” Appl. Phys. Lett. 83, 2061-2063 (2003)

【29】 Won II park, Gyu-chul Yi, Miyoung Kim, and Stenphen J. Pennycook, “ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy,” Adv mater. 14, 1841-1483 (2002)
【30】 J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails,” Nano Lett. 3, 235-238 (2003)

【31】 J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo, and Z. F. Ren, “Self-Assembly of Semiconducting Oxide Nanowires, Nanorods, and Nanoribbons,” Chem. Phys. Lett. 372, 717-722 (2003)

【32】 Jing Yu Lao, Jian Guo Wen, and Zhi Feng Ren, “Hierarchical ZnO Nanostructures,” Nano Lett. 2, 1287-1291 (2002)

【33】 W. I. Park and Gyu-Chul Yi, “Schottky Nanocontacts on ZnO Nanorod Arrays,” Appl. Phys. Lett. 82, 4358-4360 (2003)

【34】 Lionel Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Matter. 15, 464-466 (2003)

【35】 Bin Liu and Hua Chun Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc. 125, 4430-4431 (2003)

【36】 Zhengrong R. Tian, James A. Voigt, Jun liu, Bonnie Mckenzie, Matthew J. Mcdermott, Mark A. Rodriguez, Hiromi Konishi, and Huifang Xu, “Complex and Oriented ZnO Nanostructures,” Nature Mater. 2, 821-825 (2003)

【37】 Kwang-Sik Kim and Hyoun Woo Kim, “Synthesis of ZnO Nanorod on Bare Si Substrate Using Metal Organic Chemical Vapor Deposition,” Physica B 328, 368-371 (2003)

【38】 B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, “Optical Properties of ZnO Rods Formed by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 83, 1635-1637 (2003)

【39】 V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and Structural Properties of ZnO Nanorods Prepared under Different Conditions,” Appl. Phys. Lett. 83, 141-143 (2003)

【40】 M. He, P. Zhou, S. Noor Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. sarney, and L. Salamanca-Riba, “Growth of GaN Nanowires by Direct Reaction of Ga with NH3,” J. Cryst. Growth 231, 357-365 (2001)

【41】 Haoquan Yan, Rongrui He, Justin Johnson, Matthew Law, Richard J. Saykally, and Peidong Yang, “Dendritic Nanowire Ultraviolet Laser Array,” J. Am. Chem. Soc. 125, 4728-4729 (2003)

【42】 Z. L. Wang, Z. W. Pan, and Z. R. Dai, “Structures of Oxide Nanobelts and Nanowires,” Microsc. Microanal. 8, 467-474 (2002)

【43】 Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001)

【44】 Zhong Lin Wang, “Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides – From Materials to Nanodevices,” Adv. Mater. 15, 432-436 (2003)

【45】 Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces,” Phys. Rev. Lett. 91, 185502-1-185502-4 (2003)

【46】 Haoquan Yan, Rongrui He, Johnny Pham, and Peidong Yang, “Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals,” Adv. Mater. 15, 402-405 (2003)

【47】 Lionel Vayssieres, Karin Keis, Anders Hagfeldt, and Sten-Eric Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chem. Mater. 13, 4396-4398 (2001)
【48】 Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical Properties of the ZnO Nanotubes Synthesized via Vapor Phase Growth,” Appl. Phys. Lett. 83, 1689-1691 (2003)

【49】 J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, “Two-Dimensional Micrometer-Sized Single-Crystalline ZnO Thin Nanosheets,” Appl. Phys. Lett. 83, 4414-4416 (2003)

【50】 Xiang Yang Kong and Zhong Lin Wang, “Spontaneous Polarization-Induced Nanohelixes, Nanospring, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, 1625-1631 (2003)

【51】 Ying Dai, Yue Zhang, Yuan Qiang Bai, Zhong Lin Wang, “Bicrystalline Zinc Oxide Nanowires,” Chem. Phys. Lett. 375, 96-101 (2003)

【52】 Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, C. H. Liang, “Catalytic Growth of Semiconducting Zic Oxide Nanowires and their Photoluminescence Properties,” Journal of Crystal Growth 234, 171-175 (2002)

【53】 Hou T. Ng, Jun Li, Michael K. Smith, Pho Nguyen, Alan Cassell, Jie Han, and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls,” Science 300, 1249-1249 (2003)

【54】 J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater. 14, 215-218 (2002)

【55】 W. I. Park, D. H. Kim, S W Jung, and G C Yi, “Metalorganic Vapor-Phase Epitaxial Growth of Vertically Well-Aligned ZnO Nanorods,” Appl. Phys. Lett. 80, 4232-4234 (2002)

【56】 林滿玉,國立清華大學材料科學工程學系碩士論文 (2003)
【57】 M. Farnsworth and C. H. Kline, and Zinc Chemicals, 1st edition, (Zinc Development Association, London, 1973), p.47

【58】 B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO Nanostructures by a Simple Way of Thermal Evaporation,” Appl. Phys. Lett. 81, 757-759 (2002)

【59】 Seu Yi Li, Chia Ying Lee, and Tseung Yuen Tseng, “Copper-Catalyzed ZnO Nanowires on Silicon (100) Grown by Vapor-Liquid-Solid Process,” Journal of Crystal Growth 247, 357-362 (2003)

【60】 J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes,” Chem. Mater 15, 305-308 (2003)

【61】 O. Dulub, U. Diebold, and G. Kresse, “Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn,” Phys. Rev. Lett. 90, 016102-1-016102-4 (2003)

【62】 A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, “Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule,” Phys. Rev. Lett. 86, 3811-3814 (2001)

【63】 V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. Gil Girol, U. Burghaus, and Ch. Woll, “Stability of Polar Oxide Surfaces,” Phys. Rev. Lett. 90, 106102-1-106102-4 (2003)

【64】 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791-1794 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊