跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李祖民
論文名稱:外加電場及高溫催化劑顆粒還原分散法成長具方向性排列奈米碳管的研究
論文名稱(外文):外加電場及高溫催化劑顆粒還原分散法成長具方向性排列奈 米碳管的研究
指導教授:戴念華戴念華引用關係
指導教授(外文):N. H. Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:奈米碳管方向性催化劑電場輔助
外文關鍵詞:carbon nanotubesaligncatalystelectric field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的乃探討在熱裂解化學氣相沉積法中,如何調控參數,以成長具方向性排列的奈米碳管。使用的碳源前趨物為甲烷及乙炔,催化劑薄膜乃利用磁控濺鍍機鍍製,Fe0.8Co0.2、Fe、Co、Ni四種等不同催化劑薄膜。鍍膜時,控制膜厚為5 nm及10 nm,之後再利用熱處理時,通入還原氣氛Ar/H2(10%)混和氣氛,活化形成奈米尺寸的催化劑顆粒。利用鍍膜條件控制膜厚,配合還原熱處理時氣氛、壓力、以及溫度的調控,可得粒徑細小的顆粒以催化奈米碳管的成長。實驗中發現,Fe、Co、Ni三種過渡金屬元素中,鐵的效果最佳,在800 ℃下成長時,可得到大面積且排列良好的奈米碳管薄膜。
本研究亦探討外加電場對碳管成長時方向性的影響,實驗結果發現,在120 V/ 5.05 mm的微小電場下,即可促使碳源(C+、C-)沉積時平行電場方向,也使碳管成長時克服熱擾動而平行電場向上成長,因此,在沒有立體障礙的效應下,亦可利用電場輔助製程控制奈米碳管成長方向。
Multiwalled carbon nanotubes were grown vertically on catalytic nanoparticles(Fe、Co、Ni、Fe0.8Co0.2) through the thermal chemical vapor deposition process by pyrolyzing of acetylene and with the mixture of argon(90%)/hydrogen(10%) in the temperature range of 700-900 ℃. The nanoparticles were formed uniformly on the Si/SiO2 substrates after heat treatment of the catalytic films which were pre-deposited by DC sputter on the substrates. High-density aligned carbon nanotubes (CNTs) were synthesized on the iron (Fe) film and the cobalt (Co) film in this work. It was found that the average length and the average diameter of the fabricated CNTs were in the range of 20-50μm and 10-30 nm, respectively. The height of the nanotubes array can be controlled by the deposition period and the processing parameters such as the flow rate of acetylene, pressure, temperature, and the condition of electric field. Images of scanning electron microscopy revealed that the CNT film formed after deposition for 1-5 minutes. This work demonstrated that the area of synthesized CNTs array can extend over several cm2. Moreover, verticality of CNTs on Si and SiO2 substrates are compared and the mechanisms are discussed.
摘要…………………………………………………………………I
誌謝…………………………………………………………………II
總目錄………………………………………………………………Ⅳ
圖表目錄……………………………………………………………Ⅶ
第一章:緒論………………………………………………………1
1-1 前言……………………………………………………………1
1-2 奈米碳管之結構………………………………………………1
1-3 奈米碳管的物理性質…………………………………………3
1-4 奈米碳管的相關製程…………………………………………4
1-4-1 電弧放電法…………………………………………………4
1-4-2 雷射熱昇華法………………………………………………4
1-4-3 化學氣相沉積法……………………………………………5
1-5 奈米碳管的相關應用簡介……………………………………6
1-5-1 場發射電子源之應用………………………………………6
1-5-2 原子力顯微鏡(AFM)掃瞄探針……………………………6
1-5-3 奈米碳管在醫學上的應用:小而冷的X光源……………7
1-5-4 其他方面的應用……………………………………………7
第二章:研究動機與文獻回顧……………………………………17
2-1 研究動機及目的………………………………………………17
2-2 文獻回顧………………………………………………………18
2-2-1 熱裂解化學氣相沉積法成長方向性排列奈米碳管………18
2-2-2 外加電場輔助成長具方向性奈米碳管……………………19
2-2-3 以多孔矽基板成長奈米碳管………………………………20
2-2-4 陽極處理鋁基板(AAO)成長碳管……………………………22
2-3 化學氣相沉積法成長機制探討…………………………………22
第三章:研究方法及實驗步驟………………………………………33
3-1 研究方向及實驗步驟.……………...…………………………33
3-1-1 熱處理控制催化劑薄膜形成奈米顆粒的研究………………33
3-1-1-1 催化劑薄膜的製備…………………………………………33
3-1-1-2 利用熱處理還原催化劑薄膜形成催化顆粒………………33
3-1-2 成長具方向性的奈米碳管……………………………………34
3-1-3 外加電場對碳管成長時方向性影響的研究…………………34
3-2 實驗步驟流程圖…………………………………………………35
3-3 分析儀器及檢測應用……………………………………………35
3-3-1 掃瞄式電子顯微鏡……………………………………………35
3-3-2 穿透式電子顯微鏡……………………………………………35
3-3-3 拉曼光譜………………………………………………………35
第四章 結果與討論……………………………………………………38
4-1 預鍍催化劑薄膜基板熱處理還原活化結果……………………38
4-1-1 預鍍鐵鈷合金催化劑薄膜還原結果…………………………39
4-1-2 預鍍鐵催化劑薄膜還原結果…………………………………39
4-1-3 預鍍鈷催化劑薄膜還原結果…………………………………40
4-1-3 預鍍鎳催化劑薄膜還原結果…………………………………41
4-2 熱裂解乙炔成長奈米碳管………………………………………42
4-3 外加電場對碳管成長方向的影響………………………………47
4-3-1 外加電場輔助下裂解甲烷成長碳管…………………………47
4-3-2 外加電場輔助下裂解乙炔成長碳管…………………………47
第五章 結論…………………………………………………………86
第六章 參考文獻……………………………………………………88
1. Roger Bacon, “Union Carbide”, J. Appl. Phys. 31, 283 (1960).
2. S.Iijima, “Helical microtubules of graphitic carbon”,
Nature, 354, 56(1991).
3. M. S. Dresseelhaus, G. Dresseelhaus & R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
4. Peter J. F. Harris, “Carbon Nanotubes and Related Structures-new materials for the twenty-first century” Department of Chemistry, University of Reading.
5., “Carbon Nanotubes-Synthesis, Structure, Properties, and Application”, edit by M. S. Dresseelhaus, G. Dresseelhaus & P. Avouris (Springer, New York, 2001).
6. Tara Spires & R. Malcolm Brown, “High Resolution TEM Observations of Single-Walled Carbon Nanotubes”, Jr. Department of Botany, The University of Texas at Austin, Aus, 78713 (1996).
7. Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit,
Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew
G. Rinzler, Daniel T. Colbert, Gustavo Scuseria, David Tománek, John
E. Fischer & R.E. Smalley, “Crystalline Ropes of Metallic Carbon
Nanotubes”, Science, 273, 483, (1996).
8. Guanghua Gao, Tahir Cagin & William A. Goddard III, “Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNTs)”, (1997).
9. Stefano Sanvito, Young-Kyun Kwon, David Tománek, & Colin J. Lambert, “Fractional Quantum Conductance in Carbon Nanotubes”, cond-mat/9908154, Phys. Rev. Lett., 84, 1974 (2000).
10. Stefan Frank et al. “Carbon Nanotube Quantum Resistors”, Science, 280, 1744 (1998).
11. Jianwei Che, Tahir Cagin & William A. Goddard III. “Thermal Conductivity of Carbon Nanotubes”, http://www.foresight.org/Conferences/MNT7/Papers/Che/index.html
12. E. Dujardin, T. W. Ebbesen, D. A. Krishnan & P. N. Yianilos, “Young's Modulus of Single-Walled Nanotubes”, Physical Review B, 58(20), 14013, (1998).
13. 5em E. Hernández & Angel Rubio, “Nanotubes: Mechanical and Spectroscopic Properties”, (1999). http://www.fam.cie.uva.es/~arubio/psi_k/node5.html
14. Phillip F. Schewe and Ben Stein, “Physics News Update”, The American Institute of Physics Bulletin of Physics News, Number 279 (Story #2)”, July 15, 1996
15. Anthony Kendall, Thomas A. Adams II, & Elizabeth Pfaff, “Carbon Nanotubes” (1999).
16. Lecture given at Michigan State University by Phaedon Avouris, a nanotube researcher at the IBM labs. (2000).
17. David Tomànek
Personal Web Site: http://www.pa.msu.edu/~tomanek/tomanek.html
18.J. Hone, M. Whitney & A. Zettle, “Thermal conductivity of single-walled carbon nanotubes”, Synthetic Metals, 103, 2498 (1999).
19. Savas Berber, Young-Kyun Kwon, & David Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes”, Phys. Rev. Lett., 84, 4613 (2000).
20. Min-Feng Yu, Bradley S. Files, Sivaram Arepalli & Rodney S. Ruoff, “Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties”, Phys. Rev. Lett., 84, 5552 (2000).
21. C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires”, Physics Today, p22, May (1999).
22. Jeroen W. G. Wilder, Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley & Cees Dekker, “Electronic structure of tomically resolved carbon nanotubes”, Nature, 391, 6662, 59-62 (1998).
23. Teri Wang Odom, Jin-Lin Huang, Philip Kim, Charles M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, 391, 6662, 62-64 (1998).
24. “Richard E Smalley's Homepage”, Richard Smalley
Location: http://cnst.rice.edu/reshome.html
Image Gallery: http://cnst.rice.edu/pics.html
25. “Science and Application of Nanotubes”, Edited by D. Tomanek & R.J. Enbody, Kluwer Academic / Plenum Publishers, New York, 2000
26. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, W. Y. Zhou, W. Z. Li & L. X. Qian, “Very long carbon nanotubes” Nature, 394, 6694, 631 (1998).
27. L. Forro, J.P. Salvetat, J.M. Bonard, R. Basca, N.H. Thomson, S. Garaj, L. Thien-Nga, R. Gaal, A. Kulik, B. Ruzicka, L. Degiorgi, A. Bachtold, C. Schonenberger, S. Pekker & K. Hernadi, “Electronic and Mechanical Properties of Carbon Nanotubes”, “Science and Application of Nanotubes”, p297.
28. Zettle Research Group, “TEM & SEM Images of Nanotubes”,
http://www.physics.berkeley.edu/research/zettl/projects/imaging.html
29. Yahachi Saito & Sashiro Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169 (2000).
30. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert & R. E.Smalley, “Catalytic growth of single-walled nanotubes by laser vaporation”, Chem. Phy. Lett., 234, 49, (1995).
31. A.C.Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkin & M.J. Heben “Controlling single wall nanotube diameter with variation in laser pulse power ”, Chem. Phy. Lett., 316, 13, (2000).
32. Jae-hee Han, Won-Suk Yang, & Ji-Beom Yoo, “Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett, 88, 7363, (2000).
33. A. G. Rinzer & J. H. Hafner, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550, (1995).
34. W. A. de Heer, A. Chatelain, & D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
35. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee,J. E. Jung, N. S. Lee, G. S. Park & J. M. Kim, ‘‘Fully sealed, high-brightness carbon-nanotube field-emission display’’, Appl. Phys. Lett., 75, 3129 (1999).
36. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert & R. E. Smalley, ‘‘Nanotubes as nanoprobes in scanning probe microscopy’’, Nature, 384, 147 (1996).
37. S. S. Wong, E. Joselevich, A. T. Woolley, C.-L. Cheung & C. M. Lieber, ‘‘Covalently functionalized nanotubes as nanometresized probes in chemistry and biology’’, Nature, 394, 52 (1998).
38. G. Z. Yue, Q. Qiu and Bo Gao, Y. Cheng, J. Zhang, and H. Shimoda, and S. Chang, J. P. Lu & O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode”, Appl. Phys. Lett., 81, 355, (2002).
39. Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker,
‘‘Room-temperature transistor based on a single carbon nanotube’’,
Nature, 393, 49 (1998).
40. R. Martel, T. Schmidt, H. R. Shea, T. Hertel & Ph. Avouris, ‘‘Single- and multi-wall carbon nanotube field-effect transistors’’, Appl. Phys. Lett., 73 (17), 2447 (1998).
41. Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea & R.E. Walkup, ‘‘Carbon nanotubes: nanomechanics, manipulation, and electronic devices’’, Appl. Sur. Sci., 141, 201 (1999).
42. M. Ahlskog, R. Tarkiainen, L. Roschier & P. Hakonen, ‘‘Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties’’, Appl. Phys. Lett., 77 (24), 4037 (2000).
43. J. Han, A. Globus, R. Jaffe & G. Deardorff, ‘‘Molecular dynamics simulations of carbon nanotube-based gears’’, Nanotechnology, 8, 95 (1997).
44. Shankar Ghosh, etc., “Carbon Nanotube Flow Sensors”, Science, 299, 1042-1044, (2003).
45. Yihua Gao & Yoshio Bando, “Nanotechnology: Carbon nanothermometer containing gallium”, Nature, 415, 599(2002).
46. M. Endo, C. Kim, K. Nishimura, T. Fujino & K. Miyashita, ‘‘Recent development of carbon materials for Li ion batteries’’, Carbon, 38, 183 (2000).
47. Ph. Mauron et al. “Synthesis of oriented nanotube films by chemical vapor deposition”, Carbon, 40, 1339– 1344 (2002).
48. C.J. Lee et al. “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition”, Chemical Physics Letters, 360, 250–255 (2002).
49. M. Jung et al. “Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2”, Thin Solid Films, 398 –399, 150–155(2001).
50. Kim et al. “Dependence of the Vertically Aligned Growth of Carbon Nanotubes on the Catalysts”, J. Phys. Chem. B, 106, 9286-9290 (2002).
51. Lee & Park, “Growth Model for Bamboolike Structured Carbon Nanotubes Synthesized Using Thermal Chemical Vapor Deposition”, J. Phys. Chem. B, 105, 2365-2368(2001).
52. Siegal, Overmyer & Provencio, “Precise control of multiwall Carbon nanotube diameters using thermal chemical vapor deposition”, Appl. Phys. Lett., 80, 2171-2173 (2002).
53. Lee et al. “Temperature-Dependent Growth of Vertically Aligned Carbon Nanotubes in the Range 800-1100 ℃”, J. Phys. Chem. B, 106, 7614-7618 (2002).
54. 邱奕璋,“外加電場對化學氣相沈積法製備一維碳材之製程參數探討及性質研究”,國立清華大學材料所碩士論文(2002)
55. K. Yamamoto, S. Akita & Y. Nakayama, “Orientation of Carbon Nanotubes Using Electrophoresis”, Jpn. J. Appl. Phys., Part 2, 35, L917 (1996).
56. K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer & M. L. H. Green, “Optical anisotropy of dispersed carbon nanotubes induced by an electric field”, Appl. Phys. Lett., 71 (14), 1906, (1997).
57. X. Chen, T. Saito, H. Yamada & K. Matsushige, “Aligning single-wall carbon nanotubes with an alternating-current electric field”, Appl. Phys. Lett., 78 (19), 3714 (2001).
58. Y. Zhang & S. Iijima, “Elastic Response of Carbon Nanotube Bundles to Visible Light”, Phys. Rev. Lett., 82, 3472, (1999).
59. Y. Avigal & R. Kalish, “Growth of aligned carbon nanotubes by biasing during growth”, Appl. Phys. Lett., 78 (16), 2291 (2001).
60. Yuegang Zhang, Aileen Chang, Jien Cao, Qian Wang, Woong Kim & Yiming Li, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett., 79, (19),3155 (2001).
61. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. Yianilos & M. Treacy, “Young's modulus of single-walled nanotubes”, Phys. Rev. B. 58, 1403, (1998).
62. Dongsheng Xu, Guolin Guo, Linlin Gui & Youqi Tang, “Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates”, Appl. Phys. Lett., 75 (4)481 (1999).
63. Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thoms W. Tombler, Alan M. Cassell & Hongjie Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science, 283, 512, (1999).
64. Hideki Masuda, Haruki Yamada, Masahiro Satoh & Hidetaka Asoh, “Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett., 71 (19), 2770 (1997).
65. J. Li, C. Papadopoulos & J. M. Xu, “Highly-ordered carbon nanotube arrays for electronics applications”, Appl. Phys. Lett., 75 (3), 367 (1999).
66. Jae-hee Han, Won-Suk Yang & Ji-Beom Yoo, “Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 88, 7363, (2000).
67. O. M. Kuttel, O. Groening, C. Emmenegger & L. Schlapbach, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett., 73 (15), 918 (1998).
68. L. C. Qin, D. Zhou, A. R. Krauss & D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 72 (26), 3437 (1998).
69. X. K. Wang, X. W. Lin, V. P. Dravid, J. B. Ketterson & R. P. H. Chang, “Carbon nanotubes synthesized in a hydrogen arc discharge”, Appl. Phys. Lett., 66 (18), 2430 (1995).
70. V. D. Blank, I. G. Gorlova, J. L. Hutchison, N. A. Kiselev, A. B. Ormont, E. V. Polyakov, J. Sloan, D. N. Zakharov & S. G. Zybtsev, Carbon, 38, 1217, (2000).
71. N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J. P. Zhang & Ph. Redlich, “A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates”, Appl. Phys. A., 70, 175, (2000).
72. L. C. Qin, D. Zhou, A. R. Krauss & D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 72(26), 3437, (1998).
73. W.Z. Li, J.G. Wen, Y. Tu, Z.F. Ren, “Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition”, Appl. Phys. A., 73, 259, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top