|
Chapter 1 [1] M.G. Mendez, F.F. Castillon, G. A. Hirata, M. H. Farias, and G. Beamson, “XPS and HRTEM Characterization of Cobalt-Nickel Silicide Thin Films”, Applied Surface Science 161, 61-73 (2000). [2] Castor Fu, M. P. C. M. Krijn, and S. Doniach, “ Electronic structure and optical properties of FeSi, a strongly correlated insulator”, Physical Review B 49 (3), 2219 – 2222(1993). [3] V. Jaccarino et al, “Paramagnetic Excited State of FeSi”, Phys. Rev. 160, 476 (1967). [4] K. Tajima, Y. Endoh, J. Fisher, and G. Shirane, “Spin fluctuations in the temperature-induced paramagnet FeSi”, Phys. Rev. B 38, 6954(1988) [5] R. Moons, S. Degroote, J. Dekoster, A. Vantomme, and G. Langouche, “Structural characterization of metastable FeSi films and of Fe/FeSi multilayers”, Nucl. Instr. and Meth. in Phys. Res. B 136-138, 268-272 (1998). [6] E.E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, S. D. Bader, “Magnetic decoupling in sputtered Fe/Si superlattices and multilayers”, J. Appl. Phys. 73, 6335 (1993). [7] H. Lange, “”Phys. Status Solidi B 201, 3 (1997). [8] Steffen Wagner, Ettore Carpene, Peter Schaaf, and Martin Weisheit, “ Formation of β-FeSi2 by excimer laser irradiation of Fe/Si bilayers”, Applied Surface Science 186, 156-161 (2002). [9] M. C. Bost and J. E. Mahan, “Optical properties of semiconducting iron disilicide thin films”, J. Appl. Phys. 58, 2696 (1985). [10] M. C. Bost and J. E. Mahan, “”, J. Vac. Sci. & Technol. B4, 1336 (1986). [11] N. E. Christensen, “Electronic structure of beta -FeSi2”, Phys. Rev. B 42, 7148 (1990). [12] M. Hansen and K. Anderko, “ Constitution of Binary Alloys, 2nd edn.”, McGraw-Hill, New York, p 7139 (1958). [13] S.S. Lau etc., “Iron Silicide Thin Film Formation at Low Temperatures”, Thin Solid Films, 22, 415-422 (1975). [14] H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial reactions of iron thin films on silicon”, J. Appl. Phys. 72, 5905 (1985). [15] H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial Reactions of Iron Thin Films on Silicon”, J. Appl. Phys. 57(12), 5246-5250 (1985) . [16] J. M. Gallego and R. Miranda, “The Fe/Si(100) interface”, J. Appl. Phys. 69, 1377 (1991). [17] J. Alvarez, J. J. Hinarejos, E. G. Michel, J. M. Gallego, A. L. Vazquez de Parga, J. De la Figuera, C. Ocal, and R. Miranda, “Surface characterization of epitaxial, semiconducting, FeSi2 grown on Si(100)”, Appl. Phys. Lett. 59, 99 (1991). [18] Q. G. Zhu, H. Iwasaki, E. D. Williams, and R. L. Park, “Formation of iron silicide thin films”, J. Appl. Phys. 60, 2629 (1986). [19] G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992). [20] D. Mandrus et al., “Thermodynamics of FeSi”, Phys. Rev. B 51, 4769 (1995). [21] E. E. Fullerton, S. D. Bader, “Temperature-dependent biquadratic coupling in antiferromagnetically coupled Fe/FeSi multilayers”, Phys. Rev. B 53, 5112 (1996). [22] A. Chaiken and R. P. Michel, M. A. Wall, “Structure and magnetism of Fe/Si multilayers grown by ion-beam sputtering”, Phys. Rev. B 53, 5518 (1996). [23] J. Kohlhepp, M Valkier, A. van der Graaf, F. J. A. den Broeder, “Mimicking of a strong biquadratic interlayer exchange coupling in Fe/Si multilayers”, Phys. Rev. B 55, 696 (1997). [24] Y. Tomm, L. Ivaneko, K. Irmscher, St. Brehme, W. Henrion, I. Sieber, and H. Lange, “Effects of doping on the electronic properties of semiconducting iron disilicide“, Material science and engineering B 37. 215-218 (1996). [25] S. Eisebitt, J.–E. Rubensson, M. Nicodemus, T. Böske, S. Blügel, W. Eberhardt, K. Radermacher, S. Mantl, and G. Bihlmayer, “Electronic structure of buried alpha -FeSi2 and beta -FeSi2 layers: Soft-x-ray-emission and -absorption studies compared to band-structure calculations”, Phys. Rev. B 50, 18330 (1994). [26] L. Migilo and G. Malegori, “Origin and nature of the band gap in beta -FeSi2”, Phys. Rev. B 52, 1448 (1995). [27] A. B. Filonov, D. B. Migas, V. L. Shapohnikov, N. N. Dorozhkin, and G. V. Petrov, “Electronic and related properties of crystalline semiconducting iron disilicide”, J. Appl. Phys. 79 (10), 7708 (1996). [28] V. N. Antonov, O. Jepsen, W. Henrion, M. Rebien, P. Stauß, and H. Lange, “Electronic structure and optical properties of beta -FeSi2”, Phys. Rev. B 57, 8934 (1998). [29] A. B. Filonov, D. B. Migass, V. L. Shaposhnikovv, V. E. Borisenko, W. Henrion, M. Rebien, P. Stauss, and H. Lange, “Theoretical and experimental study of interband optical transitions in semiconducting iron disilicide”, J. Appl. Phys. 83, 4410 (1998). [30] S. J. Clark, H.M. Al-Allak, S. Brand, and R.A. Abram, “Structure and electronic properties of FeSi2”, Phys. Rev. B 58, 10389 (1998). [31] L. Miglio and V. Meregalli, “Theory of FeSi2 direct gap semiconductor on Si(100)”, J. Vac. Sci. Technol. B 16, 1604 (1998). [32] Leo Migilo, V. Meregalli, and O. Jepsen, “Strain dependent gap nature of epitaxial β-FeSi2 in silicon by first principles calculations”, Appl. Phys. Lett. 75, 385 (1999). [33] C. A. Dimitriadis, J. H. Werner, S. Logothetidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films”, J. Appl. Phys. 68, 1726 (1990). [34] W. M. Duncan, P.-H. Chang, B.-Y. Mao, and C.-E. Chen, “Photoluminescence and microstructural properties of high-temperature annealed buried oxide silicon-on-insulator”, Appl. Phys. Lett. 51, 773 (1987). [35] S. Fukat, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sasaki, “Time-resolved D-band luminescence in strain-relieved SiGe/Si”, Appl. Phys. Lett. 68, 1889 (1996). [36] A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, “Raman investigation of ion beam synthesized β-FeSi2”, J. Appl. Phys. 89, 965 (2001). [37] K. Radermacher, S. Mantl, C. Dieker, H. Luth, and C. Freiburg, “Growth kinetics of iron silicides fabricated by solid phase epitaxy or ion beam synthesis”, Thin Solid Films 215, 76 (1992). [38] C. A. Dimitriadis and J. H. Werner, “Growth mechanism and morphology of semiconducting FeSi2 films”, J. Appl. Phys. 68, 93 (1990) [39] J. F. Jongste, P. F. A. Alkemade, G. C. A. M. Janseen, and S. Radelaar, “Kinetic of the formation of C49 TiSi2 from Ti-Si multilayers as observed by in-situ stress measurements”, J. Appl. Phys. 74, 3869 (1993). [40] S. P. Murarka, “Metallization: Theory and Practive for VLSI and ULSI”, Butterworth-Heinemann (1993). [41] R. W. Hoffman, “Physiccs of Thin Films: Vol. 3”, Academic, New York (1996). [42] P. P. Buaud, F. M. d’Heurle, E. A. Irene, B. K. Patmaik, and N. R. Parikh, “In situ strain measurement during the formation of platinum silicide films”, J. Vac. Sci. Technolo. B 9, 2536 (1991). [43] J. F. jongste, O. B. Loopstra, G. C. A. M. Janseen, and S. Radelaar, “Elastic constants and thermal expansion coefficient of metastable C49 TiSi2” [44] J. T. Pan and I. Blech, “In situ measurement of refractory metal silicides during sintering”, J. Appl. Phys. 55, 2874 (1984). [45] C. J. Tsai and K. H. Yu, “Stress Evolution during isochronal annealing of Ni/Si system”, Thin Solid Films 350, 91 (1999) [46] A. L. Shull and F. Spaepen, “Measurements of stress during vapor deposition of copper and silver thin films and multilayers”, J. Appl. Phys. 80, 6243 (1996). [47] Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials 15, 353 (2003). [48] Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.; Parter, C. B. Science 263, 800 (1994) [49] Y. J. Han, J. M. Kim and G. D. Stucky‚ “ Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15,” Chem. Mater. 12, 2068 (2000). [50] L. Sun, P. C. Searson, C. L. Chien, “Electrochemical deposition of nickel nanowire arrays in single-crystal mica films,” Appl. Phys. Lett. 74, 2803 (1999). [51] Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee and S. T. Lee, “Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders,” Chem. Phys. Lett. 314, 16 (1999). [52] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen and C. L. Bai, “Ordered Ni-Cu Nanowire Array with Enhanced Coercivity,” Chem. Mater. 15, 664 (2003) [53] H. Cao, Z. Xu, D. Sang, C. Tie, “Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules,” Adv. Mater. 13, 21 ( 2001) [54] S. P. Murarka, M. H. Read, C. J. Doherty, D. B. Fraser, “Resistivities of thin film transition metal silicides,” Electrochem. Soc. 129, 293 (1982). [55] C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers and D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 84, 1389 (2004). Chapter 3 [1] Hansen and K. Anderko, “Constitution of Binary Alloys, 2nd edn.”, McGraw-Hill, New York, 1958, p. 713. [2] S.S. Lau etc., “Iron Silicide Thin Film Formation at Low Temperatures”, Thin Solid Films, 22, 415 (1975). [3] J. Alvarez, A. L. Vazquez de Parga, J. J. Hinarejos, J. de la Figuera, E. G. Michel, C. Ocal, and R. Miranda, “Initial Stages of the growth of Fe on Si(111) 7x7”, Phys. Rev. B 47, 16048 (1993). [4] D. sander, A. Enders, and J. Kirshner, “Stress evolution during the growth of ultrathin layers of iron and iron silicide on Si(111)”, Appl. Phys. Lett. 67, 1833 (1995). [5] S. P. Murarka, “Metallization: Theory and Practice for VLSI and ULSI”, Butterworth-Heinemann, (1993). [6] W. Buckel, “Internal Stresses”, J. Vac. Sci. Tech. 6, 606 (1969). [7] Victor E., “Semicondicing Silicides”, Borisenko,p68. [8] N. R. Baldwin, and D. G. Ivey, “Low Temperature Iron Thin Films-silicon Reactions”, J. Mater. Sci. 31, 31 (1996). [9] “Morphologies and growth modes of FeSi and layers plrepared by rapid thermail annealing, in: Silicide Thin Films- Fabrication, Properties, and Applications, edited by R. T. Tung, P. W. Pellegrini, L. H. Allen (MRS, Pittsburgh, Pennsylvania, 1996)”, pp373-378. [10] Z. Yang, G. Shao, K. P. Homewood, K. J. Reeson, M. S. Finney, and M. Harry, ”Order domain boundaries in ion beam synthesized semiconducting FeSi2 layers”, Appl. Phys. Lett. 67(5),1995. [11] G. Shao, K. P. Homewood.,“On the crystallographic characteristics of ion beam synthesized β-FeSi2”, Intermetallics 8, 1405 (2000). [12] T. Arakawa, G. Shao, S. Makiuchi, T. Ono, H. Tatsuoka, H. Kuwabara, “TEM observation of (110),(101)/Si(111) layers grown by reactive deposition epitaxy in the presence of an Sb flux”, Journal of Crystal Growth 237-239 (2002) 249-253. [13] H. C. Cheng, T.R. Yew, L. J. Chen, “Interfacial reactions of iron thin films on silicon”, J. Appl. Phys. 53, 6885 (1985). [14] Q. G. Zhu, H. Iwaraki, E. D. Williams, R. Park, ”Formation of iron silicide thin films”, J. Appl. Phys. 60, 2629 (1986). [15] C. A. Dimitriadis, J. H. Werner,“Growth mechanism and morphology of semiconducting FeSi2 films”, J. Appl. Phys. 68, 93 (1990). [16] Karen Maex, Marc Van Rossum,“Metal Silicides”, IMEC, Leuven, Belgium, pp 279-289. [17] J. F. Jongste, P. F. A. Alkemade, G. C. A. M. Janssen, and S. Radelaar, “Kinetics of the Formation of C49 TiSi2 from Ti-Si Multilayers as Observed by In Situ Sterss Measurements”, J. Appl. Phys., 74, 3869 (1993). Chapter 4 [1] A. M. Morales, C. M. Liber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208 (1998). [2] Y. Y. Wu, P. D. Yang,“ Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Soc. 123, 3165 (2001). [3] P. D. Yang and C. M. Liber,“ Nanostructured high-temperature superconductors : Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res. 12, 2981 (1997). [4] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947 (2001). [5] Zhang, R. Q.; Lifshiz, Y.; Lee, S. T. ,“Oxide assisted growth of semiconducting nanowires,” Adv. Mater. 15, 637 (2003). [6] Wang, N.; Zhang, Y. F.; Tang, Y. H.; Lee, C.S.; Lee, S. T.,“SiO2-enhanced synthesis of Si nanowires by laser ablation,”Appl. Phys. Lett. 73, 3902 (1998). [7] Wu, J. J.; Yu, C. C. J.,“ Aligned TiO2 nanorods and nanowalls,” Phys. Chem. B 108, 3378 (2004). [8] Y. D. Yin, D. G.. Zhang, Y. N. Xia, “ Synthesis and characterization of MgO nanowires through a vapor-phase precursor method,” Adv. Mater.12, 293 (2002). [9] E. I. Givargizov, “Highly anisotropic crystals,” Terra Scientific Publishing, (1986) [10] D. A. Porter and K. E. Easterling, “Phase transformations in matels and alloys,” Chapman Hall, (1981). [11] Wang, Q. H.; Sethur, A. A.; Lauerhaas, M. J.; Dai, J. Y.; Seeling, E. W., “A nanotube based field-emission flat panel display,” Appl. Phys. Lett. 72, 2912 (1998). [12] Fowler, R. H.; Nordheim, L. W.; Proc. R. Soc. London, Ser. A 119, 173 (1928). [13] Gomer, R. Field emission and Field Ionization (Harvard University Press, Cambridge, 1961), P. 195. [14] Collins, P. G.; Zettl, “Unique characteristics of cold cathode carbon nanotube matrix field emitters,” A. Phys. Rev. B 55, 9391 (1997). [15] F. Nava, K. N. Tu, E. Mazzega, M. Michelini, and G. Queirolo, “Electrical transport properties of transition-metal disilicide films”, J. Appl. Phys 61, 1085 (1987). [16] V. Probst, H. Schaber, A. Mitwalsky, H. Kabza, and B. Hoffmann, “Metal-dopant-compound formation in TiSi2 and TaSi2: Impact on dopant diffusion and contact resistance”, J. Appl. Phys. 70, 693 (1991). [17] B. M. Ditchek and M. Levinson, “Si-TaSi2 in situ junction eutectic omposite diodes”, Appl. Phys. Lett. 49, 1656 (1986). [18] M. Levinson, J. Schlafer, and B. M. Ditchek, “Si-TaSi2 composite Photodiodes with Wavelength-Independent Quantum Efficiency”, IEEE Transactions on Electron Devices 38, 2563 (1991).
|