跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高斯崇
研究生(外文):Szu-Tsung Kao
論文名稱:UBM中無電鍍鎳與以機械合金法製備錫銀銅銲料之界面反應探討
論文名稱(外文):Interfacial Reactions and Compound Formation of Sn-Ag-Cu Solders by Mechanical Alloying on Electroless Ni-P/Cu UBM
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Jenq-Gong Duh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:64
中文關鍵詞:機械合金無鉛銲錫錫銀銅複合銲料電子微探儀
外文關鍵詞:mechanical alloyinglead-free solderSnAgCucomposite solderEPMA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
機械合金法(Mechanical Alloying Technique)已使用於銲錫材料的製備上。本研究探討在不同銅含量下,以機械合金法製備之Sn-3.5Ag-xCu銲錫粉末的變化。研究中發現:經過研磨後,(Cu, Sn)的固溶體Cu6Sn5介金屬化合物(IMC)不均勻地析出並分散在銲錫粉末中。銲錫中添加的銅含量增高可促進此Cu6Sn5介金屬化合物的產生,並造成研磨之後的銲錫粉末破碎成較小的顆粒。不同銅含量的銲錫粉末形貌探討如下:銅含量較低(x=0.2 wt.%)時,粉末經聚集成較大的錠狀顆粒。當銅含量增加(x=0.7 wt.%和1.0 wt.%),粉末會研磨破碎成較小的薄片狀。文中將探討隨著此銅含量改變對於研磨機制的影響。另一方面,本文也研究出藉由添加奈米(nano)等級之Cu6Sn5粉末於銲錫粉末中,可以有效降低機械合金法製備之錫銀銅銲錫粉末尺寸的方法。DSC分析的結果得知:經由機械研磨所製備之錫銀銅銲錫材料的熔點為216°C,因此將適用於240°C之退火過程。
在界面反應方面,由於無電鍍鎳對於銅的擴散阻絕效果良好,因此被廣泛採用於電子構裝在銲錫凸塊中扮演一個擴散屏障的角色。經過240°C退火,探討不同銅含量(0.2 wt.%∼1.0 wt.%)之錫銀銅銲錫與無電鍍鎳/銅之間的界面反應情形,並藉由電子微探儀(EPMA)的定量分析,來測量在銲錫/無電鍍鎳磷界面形成之介金屬化合物中銅含量的分佈。更藉由場發射電子微探儀(FE-EPMA)的定量分析,可發現在銲錫/無電鍍鎳界面間鎳錫磷相和富磷相的生成情況。此外,本文也將研究添加Cu6Sn5的錫銀銅複合銲料與無電鍍鎳之界面反應。經過退火後發現,複合銲料與無電鍍鎳磷界面之介金屬化合物的生長速率降低,這是由於所添加的Cu6Sn5穩定分佈於銲料內部而沒有向界面移動所造成。在潤濕性方面,經過退火後,自製的錫膏與無電鍍鎳基版間形成接觸角小於25°之良好接合。
Mechanical alloying (MA) process is considered as an alternative approach to produce solder materials. In this study, the effect of Cu concentration in the ternary Sn-3.5Ag-xCu (x=0.2, 0.7, and 1 wt.%) solder by mechanical alloying (MA) was investigated. (Cu, Sn) solid solution was precipitated as Cu6Sn5 IMC which was distributed non-uniformly through the microstructure. Cu6Sn5 IMCs present in the SnAgCu solder with high Cu composition cause the as-milled MA particle to fracture to a smaller size. Distinction in morphology of as-milled MA powders with different Cu content was revealed. When the Cu concentration was low (x=0.2), MA particle aggregated to a spherical ingot with the large particle size. For higher Cu concentration (x=0.7 and x=1), MA particle turned to flakes with smaller particle size. The distinction of the milling mechanism of Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by MA process was discussed. An effective approach was developed to reduce the particle size of the SnAgCu solder down to less than 100 μm by doping the Cu6Sn5 nano particle during MA process. In addition, the DSC results also ensured the compatibility to apply the solder material for the annealing process.
Besides, electroless Ni-P (EN) under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. Solder joints after annealing at 240˚C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with Cu concentration from 0.2 wt.% to 1.0 wt.%. After deliberately quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of IMCs at SnAgCu solder/electroless Ni-P interface would be investigated. With the aid of microstructure evolution, quantitative analysis and elemental distribution by x-ray color mapping, the presence of Ni-Sn-P phase and P-rich layer could be revealed. SnAgCu composite solder reinforced with Cu6Sn5 nano dispersoids was investigated for the related interfacial reactions. The growth of the IMCs formed at composite solder/EN interface was retarded due to the stable distribution of Cu6Sn5 dispersoids in the solder after annealing. In addition, the contact angle of MA solder paste was less than 25˚ and exhibited good wettability.
Table List III
Figure Captions IV
Abstract VII
Chapter I Introduction 1
Chapter II Experimental Procedures 5
2.1 Fabrication of Lead Free Solder Pastes 5
2.1.1 Mechanical Alloying 5
2.1.2 Solder Pastes 6
2.2 Characterization of Powders 6
2.2.1 X-ray Diffraction 6
2.2.2 Differential Scanning Calorimetry (DSC) 7
2.2.3 SEM and EPMA 7
2.2.4 Wettability Test 7
2.3 Metallization Layer 8
2.4 Annealing Process 8
2.5 Microstructural Characterization of Solder Joints 9
Chapter III Results and Discussion16
3.1 Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying16
3.1.1 Characteristics of MA Powders and Milling Mechanisms 16
3.1.2 Effect of Cu concentration on morphology of SnAgCu solders 17
3.1.3 Effect of Cu6Sn5 doping on morphology of SnAgCu solders 20
3.2 Interfacial Reactions and Compound Formation of Sn-Ag-Cu solders by Mechanical Alloying on Electroless Ni-P/Cu UBM 23
3.2.1 Interfacial reaction between the SnAgCu solder and electroless Ni-P/Cu UBM 23
3.2.2 Effect of Cu6Sn5 nano particle in SnAgCu composite solder on the characteristics of solder/electroless Ni-P interface 27
3.2.3 Wettability Test 33
Chapter IV Conclusions 59
References 61
1. M. Abtew and G. Selvaduray, Mat. Sci. Eng.: R: Reports, 27, 95 (2000).
2. H. Reichl, A. Schubert and M. Töpper, Micro. Rel., 40,1243 (2000).
3. Website: gdn.ema.org.tw/newsletter/gdnEpaper20040900.htm.
4. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K.Zeng and J.K. Kivilahti, J. Mat. Res., 17, 291 (2002).
5. D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, JOM, 53, 28 (2001).
6. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen and C.R. Kao, Chem. Mat., 13, 1051 (2001).
7. S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G. Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, Electronic Components and Technology Conference, 448 (2001).
8. S.K. Kang, H. Mavoori, S. Chada, et al., J. Electron. Mater., 30, 1049 (2001).
9. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, J. Appl. Phy., 88, 6359 (2000).
10. P.T. Vianco, S.N. Burchett, M.K. Nielsen, et al., J. Electron. Mater., 28, 1127 (1999).
11. R.S. Rai, S.K. Kang and S. Purushothaman, Electronic Components and Technology Conference, 1995. Proceedings., 45th, 1197 (1995).
12. L.L. Ye, Z. Lai, J. Liu and A. Thölén, Electronic Components and Technology Conference, 134 (2000).
13. M.E. Loomans and M.E. Fine, Metal. Mat. Trans. A, 31A,1155 (2000).
14. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen and C.-Y. Li, J. Electron. Mater., 29, 1194 (2000).
15. J.R. Oliver, J. Liu and Z. Lai, International Symposium on Advanced Packaging Materials, 152 (2000).
16. W.R. Lewis, Notes on Soldering, Tin Research Institute, 1961, pp.66.
17. J.W. Morris, Jr., J.L. Freer Goldstein and Z. Mei, JOM, 25 (1993).
18. Y.Y. Chen, J.G. Duh and B.S. Chiou, J. Mat. Sci.: Mat. in Elec., 11, 279 (2000).
19. H.W. Miao and J.G. Duh, Mat. Chem. Phy., 71, 255 (2001).
20. H.W. Miao, J.G. Duh and B.S. Chiou, J. Mat. Sci.: Mat. in Elec., 11, 609 (2000).
21. Y.Y. Wei and J.G.Duh, J. Mat. Sci.: Mat. in Elec., 9, 373 (1998).
22. S.L. Chen, M.S. thesis, National Tsing Hua University, Hsinchu, Taiwan (1998).
23. T.Y. Lee, W.J. Choi and K.N. Tu, J. Mater. Res., 17, 291 (2002).
24. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater., 31, 584 (2002).
25. M.L. Huang, C.M.L. Wu and J.K.L. Lai, J. Mat. Sci.: Mat. in Elec., 11, 57 (2000).
26. C.M.L. Wu, M.L. Huang, J.K.L. Lai and Y.C. Chan, J. Electron. Mater., 29, 1015 (2000).
27. M.L. Huang, C.M.L. Wu, J.K.L. Lai and Y.C. Chan, J. Electron. Mater., 29, 1021 (2000).
28. H.L. Lai and J.G. Duh, J. Electron. Mater., 32, 215 (2003).
29. C. Suryanarayana, Pro. in Mat. Sci., 46, 1 (2001)
30. Y.C. Hsu, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2002).
31. Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl and K.W. Paik, J. Electron. Mater., 32, 548 (2003).
32. S. Choi, T.R. Bieler, J.P. Lucas and K.N. Subramanian, J. Electron. Mater., 28, 1209 (1999).
33. A.J. Sunwoo, J.W. Morris, Jr., and G.K. Lucey, Jr., Metall. Trans. 23A, 1323 (1992).
34. J.H. Lee, D. Park, J.T. Moon, Y.H. Lee, D.H. Shin and Y.S. Kim, J. Electron. Mater., 29, 1264 (2000).
35. D. Lin, G.X. Wang, T.S. Srivatsan, M.A. Hajri and M. Petraroli, Mater. Lett., 53, 333 (2002).
36. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs and R.F. Pinizzotto, J. Electron. Mater., 22, 769 (1993).
37. S.Y. Huang, J.W. Lee and Z.H. Lee, J. Electron. Mater., 31, 1304 (2002).
38. R.C. Reno, M.J. Panunto and B.H. Piekarski, J. Electron. Mater., 26, 11 (1997).
39. H.S. Betrabet, S.M. McGee and J.K. McKinlay, Scripta Metall. 25, 2323 (1991).
40. J. Wolfenstine, S. Campos, D. Foster, J. Read, W.K. Behl, J. Power Sources, 109, 230 (2002).
41. J.I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, (1981).
42. J.S. Benjamin, ‘‘Mechanical alloying’’, Sci. Amer., 234, 40 (1976).
43. L. Lu, M.O. Lai and S. Zhang, J. Mat. Pro. Tech., 67, 100 (1997).
44. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).
45. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, American Institute of Physics, 8456 (1999).
46. C.Y. Li and J.G. Duh, submitted to J. Electron Mater.
47. E. Ho, Y.L. Lin and C.R. Kao, Chem. Mater., 14, 949, (2002).
48. K.S. Kim, S.H. Huh and K. Suganuma, J. Alloy. Compd., 352, 226 (2003).
49. M. McCormack, G.W. Kammlott, H.S. Chen and S. Jin, Appl. Phys. Lett., 65, 1233 (1994).
50. L. Ye, Z.H. Lai, J. Liu and A. Thölén, Solder. Surf. Mt. Tech., 13, 16 (2001).
51. S.J. Wang and C.Y. Liu, J. Electron. Mater., 32, 1303 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊