跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋英超
研究生(外文):Ying-Chao Sung
論文名稱:濕式活化法無電鍍銅在TaN阻障層的孕核成長研究
論文名稱(外文):Study of nucleation and growth on TaN Barrier Layer with Wet Activation
指導教授:林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:64
中文關鍵詞:置換換活化法孕核高角度晶界敏化活化法低角度晶界半契合界面
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本論文以濕式活化法(置換活化法及敏化活化法)活化TaN/SiO2/Si基材表面,並進行無電鍍銅沉積反應為主題,使用SEM、HREM研究無電鍍銅膜各階段孕核及成長的機制。實驗結果顯示置換處理的Pd 顆粒較敏化處理後的尺寸大,且較稀疏。置換處理的每個Pd顆粒約30-200 nm,而由約5 nm的奈米晶粒高角度堆疊而成;Pd/Cu界面為半契合界面,有差排的產生;Cu顆粒約30-200 nm,由約5 nm的奈米晶粒堆疊而成,晶粒與晶粒間為高角度晶界,且晶粒並無明顯的優選方向。敏化活化法的催化顆粒細密均勻,可供後續無電鍍銅成長的成核點數量多,易成長出連續而平整的銅膜。敏化活化的Sn-Pd催化顆粒為單一晶粒,大小約為5-10 nm。而一區域的多顆Sn-Pd催化顆粒,可共同成長出一顆大致相同方位的銅顆粒,內部由約1 nm的奈米晶以小角度排列;不同區域,方位不同。
目錄

摘要..........................................................................................................Ⅰ
目錄…………………………………………………………………..…Ⅱ
圖目錄………………………………………………………….……….Ⅴ
表目錄…………………………………………………………….……Ⅷ
壹、前言…………………………………………………………………..1
貳、文獻回顧……………………………………………………………..2
2-1 擴散阻隔層…...……………………………….…………………….2
2-2 銅薄膜之沉積技術…...……………………………….…………….4
2-2-1 物理氣相沉積………………………………………………...5
2-2-2 化學氣相沉積………………………………………………...5
2-2-3 電鍍………………………………………………………...…7
2-2-4 無電鍍………………………………………………………...7
2-2-4-1敏化活化法……………………………………………8
2-2-4-2置換活化法…………………………………………...8
2-2-4-3有機物吸附法……….………………………………...10
2-3 無電鍍銅溶液之組成與特性……………………………………...13
2-3-1 銅鹽………………………………………………………….13
2-3-2 錯化劑……………………………………………………….13
2-3-3 還原劑…………………………………………………….…15
2-3-4 安定劑……………………………………………………….17
2-3-5 pH調整劑……………………………………………………17
2-4 無電鍍銅之化學反應式…………………………………………...18
2-4-1 化學反應式[33]……………………………………………..18
2-5 無電鍍銅成長機制[30]……..……………………………………..18
2-6 研究目的…………………………………………………………...19
參、實驗步驟……………………………………………………………21
3-1 基材………………………………………………………………...21
3-2基材的活化處理…………………………………………………21
3-2-1置換活化處理……………………………………………21
3-2-2敏化活化處理……………………………………………21
3-3無電鍍銅實驗流程……………………………………………22
3-3-1無電鍍銅鍍浴組成………………………………………22
3-3-2置換活化法無電銅流程……………………………………22
3-3-3敏化活化法無電銅流程……………………………………22
3-4 無電鍍銅膜微結構分析..……………..…………………..……….23
3-4-1 掃描式電子顯微鏡(SEM)分析……………………….……23
3-4-2 穿透式電子顯微鏡(TEM)分析……………………………..23
3-5 結晶分析……...……………………..……………………………..24
肆、結果與討論…………………………………………………………29
4-1 擴散阻隔層………………………………………………………...29
4-1-1低掠角X光繞射分析結果……………………………….….29
4-2 置換活化法無電鍍銅……………………………………………...29
4-2-1 置換活化處理…………………………………………….....29
4-2-2 置換活化法無電鍍銅……………………………………….31
4-2-2-1 SEM觀察……………………………………………...31
4-2-2-2 HRTEM分析………………………………….…….34
4-3 敏化活化法無電鍍銅……………………………………….……..47
4-3-1 敏化活化處理…………………………………………….…47
4-3-2 敏化活化法無電鍍銅………………………………...……..47
4-3-2-1 SEM觀察…..……………….………………...……..47
4-3-2-2敏化活化法無電鍍銅HRTEM觀察….……..48
4-4 置換活化無電鍍銅機制圖………………………………………...57
4-5 敏化活化無電鍍銅機制圖………………………………………...58
伍、結論…………………………………………………………………59
陸、參考文獻……………………………………………………………61
陸、參考文獻

1. 陳來助, “ULSI超大型積體電路之銅導線技術,” 電子與材料, 10月號, 1999, pp. 85-70.
2. A. Jain, A.V. Gelatos, T. T. Kodas, M. J. Hampden-Smith, R. Marsh, and C. J. Mogab, “Selective Chemical Vapor Deposition of Copper Using (hfac) Copper(I) Vinyltrimethylsilane in the Absence and Presence of Water,” Thin Solid Films, 262 (1995) pp. 52-59.
3. P. B. Ghate, “Metallization for Very-Large-Scale Integrated circuits,” Thin Solid Films, 93 (1982) pp. 359-383.
4. A. Sekiguchi and J. Koike, S. Kamiya, M. Saka,and K. Maruyama, “Void formation by thermal stress concentration at twin interfacein Cu thin films,” Applied Physics Letters, 79(2001).
5. H. S. Rathore and D. Nguyen, “Effect of Scaling of Interconnection,” Copper Metallization for Sub-Micron Integrated, Vol. 14, No. 5, 1998, pp. 29-44.
6. Y. Shacham-Diamand and A. Dedhia, “Copper Transport in Thermal SiO2,” J. Electrochem. Soc., Vol. 140, No.8, 1993, pp. 2427-2432.
7. X. Chen, G. G. Peterson, C. Goldberg, G. Nuesca, H. L. Frisch, B. Arkles, and J. Sullivan, “Low-Temperature Chemical Vapor Deposition of Tantalum Nitride from Tantalum Pentabromide for Integrated Circuitry Copper Metallization Applications,” J. Mater. Res., 14 (1999) pp. 2043-2052.
8. T. Oku and E. Kawakami, “Diffusion Barrier Property of TaN between Si and Cu,” Applied Surface Science, Vol. 99, 1996, pp. 265-272.
9. 吳文發, “積體電路技術中物理氣相沉積製程設備發展,” 電子月刊, 4月號, 1999, pp. 106-114.
10. S. Shibuki, H. Kanao, and T. Akahori, “Copper Film Formation Using Electron Cyclotron Resonance Plasma Sputtering and Reflow Method,” J. Vac. Sci. Technol. B, 15 (1997) pp. 60-65.
11. J. H. Lee, K. J. Hwang, J. Y. Kim, C. G. Suk, and S. Y. Choi, “Effects of Hydrogen Plasma Pretreatment on Characteristics of Copper Film Deposited by Remote Plasma CVD Using (hfac)Cu(TMVS),” Thin Solid Films, 375 (2000) pp. 132-136.
12. P. J. Lin and M. C. Chen, Jpn. J. Appl. Phys., 38 (1999) p. 4863.
13. R. Kröger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, “Properties of Copper Films Prepared by Chemical Vapor Deposition for Advanced Metallization of Microelectronic Devices,” J. Electrochem. Soc., 146 (1999) pp. 3248-3254.
14. R. Kröger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, and L. Chen, “Nucleation and Growth of CVD Cu Films,” Mat. Res. Soc. Symp. Proc. 564 (1999) pp. 237-241.
15. R. D. Mikkola, Q. T. Jiang and B. Carpenter, “Copper Electroplating for Advanced Interconnect Technology,” Plating and Surface Finishing, Vol. 87, No.3, 2000, pp. 81-85.
16. R. D. Mikkola, Q. T. Jiang, R Carpio and B. Carpenter, “Bath Additive and Current Density Effects on Copper Electroplating Fill of Cu Damascene Structures,” Mat. Res. Soc. Symp. Proc., Vol. 564, 1999, pp. 399-405.
17. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasuder, and C. H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration,” J. Electrochem. Soc., 144 (1997) pp. 898-908.

18. H. H. Hsu, C. C. Hsie, M. H. Chen, S. J. Lin, and J. W. Yeh, “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition,” J. Electrochem. Soc., 148 (2001) pp. C590-C598.
19. B. K. W. Baylis, A. Busuttil, N. E. Hedgecock, and M. Schlesinger, “Tin (Ⅳ) Chloride Solution as a Sensitizer in Photoselective Metal Deposition,” J. Electrochem. Soc., 123 (1976) pp. 348-351.
20. M. J. Desilva and Y. S. Diamand, “A Novel Seed Layer Scheme to Protect Catalytic Surfaces for Electroless Deposition,” J. Electrochem. Soc., 143 (1996) pp. 3512-3516.
21. N. Feldstein and J. A. Weiner, “Surface Characterization of Sensitized and Activated Teflon”, J. Electrochem. Soc., Vol. 120, No. 4, 1973, p. 475.
22. Richard Sard, “The Nucleation, Growth, and Structure of Electroless Copper Deposits,” J. Electrochem. Soc., 117 (1970) pp. 864-870.
23. Hong-Hui Hsu, Jien-Wei Yeh, and Su-Jien Lin*,z, “Repeated 3D Nucleation in Electroless Cu Deposition and the Grain Boundary Structure Involved,” J.Electrochem.soc, 150 (11) C813-C815 (2003)
24. J. C. Patterson, C. Ni. Dheasuna, J. Barrett, T. R. Spalding, M. O’Reilly, X. Jiang, and G. M. Crean, “Electroless Copper Metallization of Titanium Nitride,” Appl. Surf. Sci., 91 (1995) pp. 124-128.
25. Lina Xu , Jianhui Liao , Lan Huang , Danlin Ou , Zhirui Guo , Haiqian Zhang , Cunwang Ge , Ning Gu , Juzheng Liu ,” Thin Solid Films, 434 (2003)121–125
26. J. Shu, B. P. A. Grandjean, and S. Kaliaguine, “Effect of Cu(OH)2 on Electroless Copper Plating,” Ind. Eng. Chem. Res., 36 (1997) pp. 1632-1636.
27. 方景禮, “電鍍添加劑總論,” 表面處理工業雜誌, 153期, 1995, pp. 137-167.
28. J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating. Ⅱ. One Mechanism for Different Reductants,” J. Appl. Electrochem., 11 (1981) pp. 395-400.
29. J. E. A. van den Meerakker, “On the Mechanism of Electroless Plating. I. Oxidation of Formaldehyde at Different Electrode Surfaces,” J. Appl. Electrochem., 11 (1981) pp. 387-393.
30. M. Schlesinger and M. Paunovic, Modern Electroplating, Fourth Edition, Wiley Interscience, New York, (2002) pp. 652-665.
31. 齊藤圈, “金屬表面技術,” 17期, 1966, pp.14-26.
32. M. Pounovic and R. Arndt, “The Effect of Some Additives on Electroless Copper Deposition,” J. Electrochem. Soc., 130 (1983) pp. 794-799.
33. R. M. Lukes, Plating, 51, (1964) pp. 1066-1073.
34. V. V. Svirdow, Byelorussian University, Minsk, Russia, “Electrolessly Deposited Diffusion Barriers for Microelectronics,” IBM J. Res. Develop., 42 (1998) pp. 607-620.
35. 鄧經緯, “濕式活化無電鍍銅技術在Ta(N)阻隔層上金屬化之研究,” 國立清華大學碩士論文, 2001年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top