跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳紹筠
論文名稱:γ相氧化鋁磊晶成長在矽(111)方向其結構性質的探討
論文名稱(外文):Single Crystal g-Al2O3 Films on Si (111)-Epitaxial Growth, structural, and Electrical Properties
指導教授:洪銘輝
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:31
中文關鍵詞:異質磊晶
外文關鍵詞:Al2O3RHEEDX-ray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文主要是在研究以分子束磊晶的方法成長γ-Al2O3在Si(111)基板上之晶體結構,性質與電性的關係,並與其他團體的結果做比較。研究的結果顯示,我們的實驗結果和別人比較起來有很明顯的改善。
在實驗方面,我在分子束磊晶系統裡以電子束蒸發高品質的藍寶石晶體來成長γ-Al2O3薄膜,並且以位於系統內的高能量電子繞射儀(RHEED)來辨別所成長之薄膜的品質,接著以X光來分析其晶體結構、與基板之間介面的平整度、與基板之間的方位關係,並且分析其電性。結果顯示,成長出來的氧化鋁薄膜為γ相並且其(111)軸和基板的(111)軸平行,且其厚度均勻,是一個理想的單晶薄膜。此結果可以用在將來繼續成長GaN/Al2O3 的參考。
Al2O3 films, electron beam evaporated from a high-purity single crystal sapphire source in UHV (a molecular beam epitaxy (MBE) approach), have been found to be epitaxially grown on Si (111) substrate. The structural studies were carried out by single crystal x-ray diffraction and transmission electron microscopy (TEM) with the initial epitaxial growth observed using in-situ reflection high energy electron diffraction (RHEED). The film morphology has also been studied by atomic force microscopy (AFM). The Al2O3 films grown in our MBE system have a cubic γ-phase with a very uniform thickness and a highly structural perfection, even for films as thin as 3.8 nm. The film thickness has been studied using low-angle x-ray diffraction (x-ray reflectivity) and cross-sectional TEM. The film normal was found to be <111>, which is well aligned with the Si substrate normal. All the in-plane unit cell vectors of the film are parallel to those of the substrate. A mosaic scan of the Al2O3 (222) peak (with no in-plane component) shows a 0.3 degree (or 18’) spread for a film 11 nm thick, while a 0.6 degree spread for a film 3.8 nm thick. A degenerate component (of ~ 10%) and 3o splitting were observed in x-ray phi-cone scans. A capping Si layer grown on top of the oxide film at a substrate temperature of 800 �aC is in a form of islands, not a smooth layer, as observed using x-ray reflectivity, TEM, and AFM. Nevertheless, the capping Si has the same orientation as that of the underlying Si (111) substrate. The interface between the γ-Al2O3 film and Si (111) was atomically sharp as observed using x-ray reflectivity and cross-section TEM. The electrical measurements show a low leakage current density of 10-7 A/cm2 and a breakdown field of 7 MV/cm for the oxide film 7.5 nm and a leakage current density of 10-1 A/cm2 and a breakdown field of ~10 MV/cm for the oxide film 3.8 nm thick.
TABLE OF CONTENT

I. Abstract ............................1
II. Introduction ...........................2
III. Instrumentation and Theory
Molecular beam epitaxy system ..................4
Single crystal X-ray diffraction...................4
X-ray low angle reflectivity ...................4
Spectral ellipsometry.......................6
Capacitance-voltage and current-voltage Characteristic007 .......7
Atomic force microscope.....................7
Transmission electronic microscope.................8
IV. Experimental Procedure .....................11
V. Results and Discussion
Structure of γ-Al2O3 ......................14
RHEED observation ......................14
Ellipsometry measurement....................15
X-ray measurement ......................15
AFM observation........................20
TEM observation .......................21
I-V and C-V measurement ....................24
VI. Conclusion and Summary .....................29
VII. Reference............................31
Reference
1 H. Ishiwara and T. Asano, Appl. Phys. Lett. 40, 66 (1982).
2 M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, K. Kodama, H. Yamawaki, and T. Yamaoka, J. Electrochem. Soc. 129, 2569 (1982).
3 M. Ishida, K. Sawada, S. Yamaguchi, and T. Nakamura, Appl. Phys. Lett. 55, 556 (1989)
4 K. Sawada, M. Ishida, N. Ohtake, and T. Nakamura, Appl. Phys. Lett. 52, 1672 (1988)
5 H. Wado, T. Shimizu, and M. Ishida, Appl. Phys. Lett. 67, 1672 (1995)
6 Hiroyuki Wado, Tadami Shimizu, Makoto Ishida, Appl. Phys. Lett. 67 (15), 9 October 1995
7 Young-Chul Jung, Hiroyuki Miura, Kentaro Ohtani, Makoto Ishida, Journal of Crystal Growth 196 (1999) 88-96
8 Y.C. Jung, H. Miura, K. Ohtani, M. Ishida, Appl. Phys. Lett. 68 (1996)
9 A. F. Wells, Structural Inorganic Chemistry, 3rd ed.(Clarendon Press, Oxford, 1962).
10 Akihiro Wakahara, Hiroshi Oishi, Hiroshi Okada, Akira Yoshida, Yoshiaki Koji, Makoto Ishida, Journal of Crystal Growth 236 (2002) 21-25
11 Makoto Ishida, Young-Chul Jung, Hiroyuki Miura, Yoshiaki Koji, Kazuaki Sawada, Mamoru Yoshimoto, Mizuno Keisuke, Miyahara Takahumi, Maruta Hideaki, Thin Solid Film 369 (2000) 134-137
12 Young-Chul Jung, Hiroyuki Miura, Makoto Ishida, Journal of Crystal Growth 201/202 (1999) 648-651
13 J. T. Zborowski, T. D. Golding, R. L. Forrest, D. Marton, and Z. Zhang, J. Vac. Sci. Technol. B 16(3),1998 1451-1455
14 M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B 14(3), May/Jun, 2297, 1996
15 J. Als-Nielsen in Structure and Dynamics of Surfaces, edited by W.Schommers and P. von Blanckenhagen (Springer, Berlin, 1986), p. 181.
16 J.H. Underwood and T.W. Barbee, Appl. Opt. 20, 3027 (1981)
17 Gonzalo Gutierrez, Adrian Taga, and Borje Jogansson, PHYSICAL REVIEW B, VOLUME 65, 012101
18 C. Wolverton and K. C. Hass, PHYSICAL REVIEW B, VOLUME 63, 024102
19 B. Ealet, M. H. Elyakhlouffi, E. Gillet, and M. Ricci, Thin Solid Films 250, 92 (1994)
20 V. Jayaram and C. G. Levi, Acta Matall. 37, 569 (1989)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top