跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳繼安
研究生(外文):Chi-An Wu
論文名稱:8-羥奎林鋁鹽奈米晶成長機制及其熱處理研究
論文名稱(外文):On the Growth Mechanism and Heat Treatment of Alq3 Nanoparticles
指導教授:彭宗平彭宗平引用關係
指導教授(外文):Tsong-Pyng Perng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:116
中文關鍵詞:8-羥奎林鋁鹽有機奈米顆粒氣相沈積法光激發光光譜穿透光譜奈米線熱處理
外文關鍵詞:Alq3organic nanoparticlesvapor condensationphotoluminescence spectrumtransmittance spectrumnanowiresheat treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
有機材料被視為二十一世紀前景看好的領域,而奈米科技要蓬勃發展的根基在於對奈米材料性質的徹底研究。本實驗係接續先前本實驗室在Alq3 有機奈米晶之的研究。
本實驗係利用氣相沈積法製作 Alq3 奈米晶,並透過控制工作壓力、工作溫度、基板溫度以及基板與蒸鍍源間距等參數來控制粒徑。透過掃瞄式電鏡可觀察到奈米顆粒的群體呈現螺旋狀交互連結的排列,而此種成長機制可合理地利用大氣科學及氣象學來解釋。透過X光繞射、穿透式電鏡和穿透光譜的量測可發現 Alq3 奈米晶呈現非晶態。透過示差掃瞄熱量分析可發現其相變化溫度及熔點因材料呈現奈米結構而有下降的趨勢。Alq3 奈米晶對空氣中水氣及氧氣的敏感度可由光激發光光譜的研究而獲得,而此結果顯示光激發光強度的衰減率隨粒徑變小而增快。
此外,奈米顆粒可經由退火而呈現部分結晶的狀態。更精確而言,奈米晶的形貌會因退火而轉變為奈米線,而此奈米線的半徑與奈米晶相仿,長度則超過一微米,與本實驗室先前的研究有明顯的不同,此項轉變提供製備奈米線的另一種製程。當非晶態的奈米顆粒轉變為具晶相之奈米線時,光激發光光譜顯示出有些許的藍移,而此結晶相可由穿透光譜來判定。
Organic materials are considered as a promising field in the 21st century. The vigorous development in nanoscience and nanotechnology is based on a complete research of a nanostructured materials. The present study is a succession to the previous work on Alq3 organic nanoparticles.
The size of Alq3 nanoparticles prepared by a vapor condensation can be altered by controlling working pressure, working temperature, substrate temperature, and distance between the boat and the substrate. The helix cross-linked morphology observed by SEM and the formation and growth mechanism could be explained by the principles of atmospheric science and meteorology. The amorphous structure of Alq3 nanoparticles was examined by XRD, TEM, and transmittance spectra. By DSC measurement the phase transition temperature and the melting point was found to decrease due to the nanosized structure. The moisture and oxygen sensitivity of Alq3 nanoparticles with different sizes were studied by photoluminescence spectra (PL). The result shows that the degradation rate increases as the particle size decreases.
Besides, the annealing process made the nanoparticles become partially crystallized. The morphology was changed into nanowires with a diameter close to the particle size and a length longer than 1 μm. This provides a new route to prepare nanowires of Alq3. The peaks of PL spectra showed a blue shift as the amorphous nanoparticles transformed into crystalline nanowires, and the crystalline phase can be identified by transmittance spectrum.
中文摘要 i
Abstract iii
誌謝 v

Chapter 1 Introduction 1
1.1 Nanoscience and nanotechnology 1
1.2 Importance of organic nanostructured materials 1
1.3 Fabrication of organic nanoparticles 2
1.4 Alq3 nanoparticles prepared by vapor condensation
process 5

Chapter 2 Literature Review 8
2.1 Basic Properties of Alq3 8
2.1.1 The Molecular Structure of Alq3 8
2.1.2 The Crystalline Phase of Alq3 8
2.1.3 Thermal Properties of Alq3 8
2.1.4 Electron transport of Alq3 12
2.1.5 Optical Properties of Alq3 16
2.1.6 Morphologies of nanostructured Alq3 25
2.2 Atmospheric Science and Meteorology 25
2.2.1 Troposphere and tropopause 25
2.2.2 Cirrocumulus 39
2.2.3 Precipitation: Physical Process 42

Chapter 3 Experimental Procedures 45
3.1 Preparation of Alq3 nanoparticles 45
3.1.1 Apparatus 45
3.1.2 Vapor Condensation Method 47
3.2 Analysis of Alq3 nanoparticles 49
3.2.1 Field Emission Gun Scanning Electron Microscopy
(FEG-SEM) 49
3.2.2 Transmission Electron Microscopy (TEM) 49
3.2.3 X-ray Diffraction (XRD) 49
3.2.4 Differential Scanning Calorimeter (DSC) 51
3.2.5 Photoluminescence (PL) 51
3.2.6 Transmittance Spectra 52
3.2.7 Atomic Force Microscopy (AFM) 52

Chapter 4 Results and Discussion 53
4.1 As-prepared Alq3 nanoparticles 53
4.1.1 Size control of Alq3 nanoparticles 53
4.1.1.1 Effect of working pressure 53
4.1.1.2 Effect of boat temperature (working
temperature) 59
4.1.1.3 Effect of substrate temperature 63
4.1.1.4 Effect of distance between graphite boat
and substrate 69
4.1.1.5 Comprehensive interpretation of the growth
mechanism 69
4.1.2 Crystallinity of Alq3 nanoparticles 79
4.1.3 Thermal property of Alq3 nanoparticles 81
4.1.4 Photoluminescence 85
4.2 Annealed Alq3 nanoparticles 95
4.2.1 Identification of crystallinity 100
4.2.2 Photoluminescence 106
4.2.3 Transmittance Spectra 106

Chapter 5 Conclusions 110

References 112
[01] J. H. Fendler, Chem. Mater. 8, 1616 (1996).
[02] D. M. Cyr, B. V. Venkataraman, and G. W. Flynn,
Chem. Mater. 8, 1600 (1996).
[03] Z. L. Wang, Adv. Mater. 10, 13 (1998)
[04] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and
A. P. Alivisatos, Science 281, 2013 (1998).
[05] V. L. Colvin, A. N. Goldstein, and A. P.
Alivisatos, J. Am. Chem. Soc. 114, 5221 (1992).
[06] A. N. Goldstein, C. M. Echer, and A. P.
Alivisatos, Science 256, 1425 (1992).
[07] A. P. Alevisatos, Science 271, 933 (1996).
[08] K. Dick, T. Dhanasekaran, Z. Zhang, and D.
Meisei, J. Am. Chem. Soc. 124, 2312 (2002).
[09] J. Rupp and R. Birringer, Phys. Rev. B 36, 7888
(1987).
[10] P. Vettiger, G. Cross, M. Despont, U. Drechsler,
U.Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H.
E. Rothuizen, R. Stutz and G. Binnig, IEEE Trans.
Nanotech. 1, 39 (2002).
[11] J. Wiley and A. Steinman, Micro 17, 35 (1999).
[12] L. Valentini, I. Armentano, J. M. Kenny, C.
Cantalini, L. Lozzi, and S. Santucci, Appl. Phys.
Lett. 82, 961 (2003).
[13] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang,
H. Dai, S. Peng, and K. J. Cho, Nano Lett. 3, 347
(2003).
[14] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline,
S. Peng, K. Cho, and H. Dai, Nature 287, 622
(2000).
[15] J. P. Novak, E. S. Snow, E. J. Houser, D. Park,
J. L. Stepnowski, and R. A. McGill, Appl. Phys.
Lett. 83, 4026 (2003).
[16] E. S. Snow, J. P. Novak, P. M. Campbell, and D.
Park, Appl. Phys. Lett. 82, 2145 (2003).
[17] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M.
Ajayan, Nature 424, 171 (2003).
[18] H. Masuhara, H. Nakanishi, and K. Sasaki,
“Single Organic Nanoparticles”, 1st ed.,
Springer, Berlin, 2003.
[19] Nalwa, “Handbook of Nanostructured Materials and
Nanotechnology”, 1st ed., Academic Press, San
Diego, 2000.
[20] T. T. Kodas and M. J. Hampden-Smith, “Aerosol
Processing of Materials”, 1st ed., John Wiley &
Sons, New York, 1999.
[21] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys.
47, 2200 (1976).
[22] C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett.
51, 913 (1987).
[23] J. J. Chiu, W. S. Wang, C. C. Kei, and T. P.
Perng, Appl. Phys. Lett. 83, 347 (2003).
[24] J. J. Chiu, C. C. Kei, T. P. Perng, and W. S.
Wang, Adv. Mater. (Weinheim, Ger.) 15, 1361 (2003).
[25] J. J. Chiu, W. S. Wang, C. C. Kei, C. P. Cho, T.
P. Perng, P. K. Wei, and S. Y. Chiu, Appl. Phys.
Lett. 83, 4607 (2003).
[26] A. Curioni, M. Boero, and W. Andreoni, Chem.l
Phys. Lett. 294, 263 (1998).
[27] A. Curioni and W. Andreoni, J. Am. Chem. Soc.
121, 8216 (1999).
[28] A. Curioni and W. Andreoni, Synth. Metal. 111-
112, 299 (2000).
[29] M. Brinkmann, G. Gadret, M. Muccini, C. Taliant,
N. Masciocchi, and A. Sironi, J. Am. Chem. Soc.
122, 5147 (2000).
[30] M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F. D.
Meyer, W. Milius, H. Hillebrecht, O. Wendland, J.
U. von Schutz, and W. Brutting, J. Chem. Phys.
114, 9625 (2001).
[31] P. Addy, D. F. Evans, R. N. Sheppard, Inorg.
Chim. Acta 127, L19 (1987).
[32] L. S. Sapochak, A. Padmaperuma, N. Washton, F.
Endrino, G. T. Schmett, J. Marshall, D. Fogarty,
P. E. Burrows, and S. R. Forrest, J. Am. Chem.
Soc. 123, 6300 (2001).
[33] K. Naito and A. Miura, J. Phys. Chem. 97, 6240
(1993).
[34] K. A. Higginson, X. M. Zhang, and F.
Papadimitrakopoulos, Chem. Mater. 10, 1017 (1998).
[35] P. E. Borrows, Z. Shen, V. Bulovic. D. M.
McCarty, S. R. Forrest, J. A. Cronin, and M. E.
Thompson, J. Appl. Phys. 79, 7991 (1996).
[36] S. Coe, W. K. Woo, M. Bawendi, and V. Bulvovic,
Nature 420, 800 (2002).
[37] A. Schmidt, M. L. Anderson, and N. R. Armstrong,
J. Appl. Phys. 78, 5619 (1995).
[38] D. Yoshimula, T. Yokoyama, E. Ito, H. Ishii, Y.
Ouchi, S. Hasegawa, and K. Seki, Synth. Metal.
102, 1145 (1999).
[39] G. Parthasarathy, P. E. Burrows, V. Khalfin, V.
G. Kozlov, and S. R. Forrest, Appl. Phys. Lett.
72, 2138 (1998).
[40] Z. H. Xiong, Di Wu, Z. V. Vardeny, and Jing Shi,
Nature 427, 821 (2004).
[41] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto,
H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai,
Appl. Phys. Lett. 65, 807 (1994).
[42] Y. Ohmori, H. Kajii, T. Sawatani, H. Ueta, and K.
Yoshino, Thin Solid Films 393, 407 (2001).
[43] M. D. Halls and H. B. Schlegel, Chem. Mater. 13,
2632 (2001).
[44] S. Y. Kim, S. Y. Ryu, J. M. Choi, S. J. Kang, S.
P. Park, S. Im, C. N. Whang, and D. S. Choi, Thin
Solid Films 398-399, 78 (2001).
[45] A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W.
Law, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W.
K. Chan, Proc. SPIE 4642, 118 (2002).
[46] D. S. Qin, D. C. Li, Y. Wang, J. D. Zhang, Z. Y.
Xie, G. Wang, and L. X. Wang, Appl. Phys. Lett.
78, 437 (2001).
[47] P. F. Smith, P. Gerroir, S. Xie, A. M. Hor, Z.
Popovic, and M. L. Hair, Langmuir 14, 5946 (1998).
[48] J. C. Scott, J. H. Kaufman, P. J. Brock, R.
Dipietro, J. Salem, J. A. Goitia, J. Appl. Phys.
79, 2745 (1997).
[49] F. Papadimitrakopoulos and X. M. Zhang, Synth.
Metal. 85, 1221 (1997).
[50] P. E. Burrows, V. Bulovic, S. R. Forrest, S.
Sapochak, D. M. McCarty, and M. E. Thompson, Appl.
Phys. Lett. 65, 2922 (1994).
[51] H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. Hu, C.
Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998).
[52] F. Papadimitrakopoulos, X. M. Zhang, D. L.
Thomsen, III, and K. A. Higginson, Chem. Mater. 8,
1363 (1996).
[53] A. B. Dhurisic, T. W. Lau, L. S. M. Lam, W. K.
Chan, Appl. Phys. A 78, 375 (2004).
[54] M. Brinkmann, F. Biscarini, C. Taliani, I.
Aiello, and M. Ghedini, Phys. Rev. B 61, R16 339
(2000).
[55] M. Brinkmann, S. Graff, and F. Biscarini, Phys.
Rev. B 66, 165430 (2002).
[56] School of Biological Sciences, Queen Mary
University of London.
(http://www.biology.qmul.ac.uk/research/staff/s-
araya/watercy.htm)
[57] S. Miller, Climate Change Research Center, New
Hampshire.
(http://www.ccrc.sr.unh.edu/~stm/AS/Weather_Toolbox
/NE_Weather_Primer.html)
[58] C. D. Ahrens, “2000: Meteorology Today”, 6th
ed., Brooks/Cole, Forest Groved, 2000.
[59] 戚啟勳, “大氣科學”, 2nd ed., 大中國, 台北, 2001.
[60] University of North Carolina at Chapel Hill
(http://www.unc.edu/courses/2003ss2/geog/011/001/
clouds_precipitation1.html)
[61] S. Pettersen, “Introduction to Meteorology”,
2nd ed., McGraw Hill, Tokyo, 1958.
[62] 戚啟勳, “普通氣象學”, 1st ed, 正中, 台北, 1966.
[63] 張立德, 牟季美, “納米材料和納米結構”, 科學, 北
京, 2001.
[64] L. S. Sapochak, A. Ranasighe, H. Kohlmann, K. F.
Ferris, and P. E. Burrows, Chem. Mater. 16, 401
(2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top