跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪炘燕
研究生(外文):Shin-Yan Hong
論文名稱:CdSe與CdSe/ZnSe量子點製備分析及其光性質之研究
論文名稱(外文):CdSe and Core/Shell CdSe/ZnSe Quantum Dots: Synthesis and Characterization
指導教授:彭宗平彭宗平引用關係
指導教授(外文):Tsong-Pyng Perng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:78
中文關鍵詞:奈米晶硒化鎘硒化鎘/硒化鋅晶核-晶殼結構光激發光X光繞射穿透式電子顯微鏡核磁共振光譜儀化學蝕刻紫外-可見光吸收光譜
外文關鍵詞:CdSe nanocrystalsCdSe/ZnSe nanocrystalscore/shell structurefluorescence emissionX-ray diffractionTEMNMRChemical etchingUV-visible absorption spectroscopy.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
由於在奈米尺度下的硒化鎘可藉由改變粒徑而造成能隙改變,使得硒化鎘可產生多種光激發光。其發光波長廣泛且具高發光效率,因而引起廣泛地研究與討論。藉由晶核-晶殼結構,更可有效提高其發光效率。本研究係以液相合成法,在高溫油相中製備硒化鎘及晶核-晶殼結構之硒化鎘/硒化鋅奈米晶,並探討其結構及發光性質。
本實驗中,藉由X光繞射圖(XRD)計算奈米晶之平均粒徑大小與鑑定晶體結構。由穿透式電子顯微鏡(TEM)觀察其型貌及組成成分。另外,從核磁共振光譜儀(NMR)可得知其表面官能基種類。在光學性質方面,吸收能隙的資訊,係以紫外-可見光吸收光譜分析儀(UV-visible absorption spectroscopy)量測之。
就組成結構鑑定而言,相對於硒化鎘奈米晶,晶核-晶殼結構之硒化鎘/硒化鋅奈米晶在X光繞射圖會產生些許位移;TEM繞射圖可證明在小範圍區域內,同時存在硒化鎘及硒化鋅;而藉由化學蝕刻法,奈米晶從表面至晶體內部逐漸被TPPO蝕刻,再經由觀察晶體發光性質的改變,可瞭解各層材料的種類。
在光激發光實驗方面,分作兩部分作討論。第一部份為硒化鎘奈米晶之發光性質,討論不同粒徑之硒化鎘奈米晶對於發光波長及發光效率的影響。第二部份為晶核-晶殼結構之硒化鎘/硒化鋅奈米晶之發光性質,比較硒化鎘及晶核-晶殼結構之硒化鎘/硒化鋅奈米晶的發光效率,證實晶核-晶殼結構可提高奈米晶之發光效率。不同殼層厚度對於發光效率亦有不同影響。經由討論其成長過程之發光波長,推論晶核-晶殼結構之殼層並非完全覆蓋晶核。
For CdSe nanocrystals, the widening of band gap appears and the fluorescence emission wavelength is red shifted as the particle size increases. The study of CdSe nanocrystals is a very active field of research because of the wide range of emission wavelength and the high quantum yield. The quantum yield can be improved by the formation of a core/shell structure. In this study, CdSe and core/shell CdSe/ZnSe nanocrystals were synthesized in a lipophilic phase at high temperature. The structure and optical properties of CdSe and core/shell CdSe/ZnSe were studied.
The mean particle sizes and crystal structures of CdSe and CdSe/ZnSe nanocrystals were determined by XRD, and the morphology and component were analyzed by the TEM micrographs and diffraction patterns. The information of surfactants attached to the surface of CdSe nanocrystals was revealed by NMR. The absorption band gap was examined by UV-visible absorption spectroscopy.
The identification of core/shell structure was made by XRD and TEM. The peak shift in the X-ray diffraction patterns of CdSe/ZnSe increases with increasing the ratio of ZnSe to CdSe. TEM diffraction patterns demonstrated the coexistence of CdSe and ZnSe in a small area. The core/shell structure of CdSe/ZnSe was examined by etching with TPPO, and a ZnSe shell on the surface of CdSe nanocrystal core was evidenced by the etching.
Two parts of fluorescence experiment were conducted. In the first part, the fluorescence emission wavelength and quantum yield of CdSe nanocrystals with different sizes were studied. In the second part, the optical properties of core/shell CdSe/ZnSe were studied. Formation of a core/shell structure improved the quantum yield of the nanocrystals, evidenced by the higher quantum yields of CdSe/ZnSe. A more amount of ZnSe resulted in a higher quantum yield. A slight peak shift in the fluorescence emission spectra was observed as the length of reaction time was increased, implying that the structure of CdSe/ZnSe was not a perfect core/shell structure.
摘要
Abstract
致謝
Table of Content
Chapter I Indroduction 1
1-1 Nanomaterials 1
1-2 Preparation of Nanomaterials 1
1-3 Quantum Confinement Effect 2
1-4 Types of Semiconductor 4
1-5 Applications of Semiconductor Nanocrystals 7
Chapter II Literature Review 9
2-1 Semiconductor Nanomaterials 9
2-1.1 Characteristics of semiconductor nanometerials 9
2-1.2 Fluorescence mechanisms of semiconductor nanometerials 13
2-2 CdSe Nanocrystals 13
2-2.1 Synthesis of CdSe nanocrystals 13
2-2.2 Factors influencing size distribution 16
2-2.3 Factors influencing the quantum yield of CdSe nanocrystals 18
2-3 CdSe/ZnSe Core/Shell Nanocrystals 21
2-3.1 Origin of the core/shell structure 21
2-3.2 Synthesis of the core/shell structure of CdSe/ZnSe 21
2-3.3 Structure identification of CdSe/ZnSe 23
Chapter III Experimental Procedures 26
3-1 Chemicals for the Synthesis 26
3-2 Synthesis of Nanocrystals 27
3-2.1 Synthesis of CdSe 27
3-2.2 Synthesis of CdSe/ZnSe 30
3-3 Characterization of Nanocrystals 34
3-3.1 Transmission electron microscopy (TEM) 34
3-3.2 X-ray diffraction (XRD) 36
3-3.3 Nuclear magnetic resonance spectrometry (NMR) 36
3-3.4 Chemical etching 38
3-3.5 UV-visible absorption spectroscopy 40
3-3.6 Fluorescence (FL) 41
Chapter IV Results and Discussion 44
4-1 CdSe Nanocrystals 44
4-1.1 XRD analysis of CdSe nanocrystals 44
4-1.2 1H NMR of CdSe nanocrystals 44
4-1.3 TEM observation of CdSe nanocrystals 46
4-1.4 UV-visible absorption spectroscopy of CdSe nanocrystals 46
4-1.5 Fluorescence of CdSe nanocrystals 50
4-1.6 Quantum yield of CdSe nanocrystals 53
4-2 Core/Shell CdSe/ZnSe Nanocrystals 56
4-2.1 XRD analysis of CdSe/ZnSe nanocrystals 56
4-2.2 TEM observation of CdSe/ZnSe nanocrystals 56
4-2.3 Etching with TPPO 60
4-2.4 Optical properties of core/shell CdSe/ZnSe nanocrystals 65
4-2.5 Quantum yield of CdSe/ZnSe nanocrystals 66
Chapter V Conclusions 71
Chapter VI Suggested Future Work 73
Reference 74
References
1. W. L. Wilson, P. F. Szajowdki and L. E. Brus, Science, 262, 1242 (1993).
2. A. P. Alivisatos, Science, 271, 933 (1996).
3. T. Takagahara and K. Takeda, Phys. Rec. B, 46, 15578 (1992).
4. A. Ding, M. Ikeda, M. Fukuda, S. Miyazaki and M. Hirose, Appl. Phys. Lett., 73, 3881 (1998).
5. D. J. Lockwood and A. G. Wang, Solid State Commu., 94, 905 (1995).
6. M. F. Crommie, C. P. Lutz and D. M. Eigler, Science, 258, 218 (1993).
7. 王崇人, 科學發展, 354, 48 (2002).
8. H. M. Lin, C. M. Hsu, H. Y. Yang, P. L. Lee and C. C. Yang, Sensor Actu. B, 22, 63 (1994).
9. H. M. Lin, T. Y. Hsu, C.Y. Tung and C. M. Hsu, Nanostr. Mater., 6, 1001 (1995).
10. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall. Trans. A, 21A, 2333 (1990).
11. C. A. Foss Jr., G. L. Hornyak and J. A. Stockert., J. Phys. Chem., 98, 2963 (1994).
12. L. Harris, D. Jeffries and B. M. Siegel, J. Appl. Phys., 19, 791 (1948).
13. S. Kasukabe, S. Yatsuya and R. Uyeda, Jpn. J. Appl. Phys., 13, 1714 (1947).
14. A. R. Tholen, Acta Metal., 79, 1765 (1979).
15. T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, C. Busseret, A. Souifi and G. Guillot, Appl. Surf. Sci., 164, 29 (2000).
16. E. Winfree, F. Liu, L.A. Wenzler and N.C. Seeman, Nature, 394, 539 (1998).
17. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C.S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett., 72, 1835 (1998).
18. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumato, T. Futagi and H. Mimura, Phys. Rev. B, 48, 2827 (1993).
19. T. Takagahara and K. Takeda, Phys. Rev. B, 46, 15578 (1992).
20. C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley, New York (1996).
21. J. W. D. Callister, , Materials Science and Engineering an Introduction, 5th ed., John Wiley, New York, 616-623 (2000).
22. D. A. Neamen, Semiconductor Physics and Devices, 2nd ed., Mc Graw Hill, New York, 1-25 (1999).
23. M. A. Kastner, Rev. Mod. Phys., 64, 849 (1992).
24. A. P. Alivisatos, J. Phys. Chem., 100, 13226 (1996).
25. S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Nature, 420, 800 (2002).
26. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, J. Am. Chem. Soc., 122, 12142 (2000).
27. P. R. Blanco and S. C. Kowalczykowski, Nature, 405, 368 (2000).
28. S. Nie and W. C. W. Chan, science, 281, 2016 (1998).
29. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos, Science, 281, 2013 (1998).
30. N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st ed., Saunders College, Florida (1976).
31. L. E. Brus, J. Chem. Phys., 80, 4403 (1984).
32. R. Rossetti, J. L. Ellison, J. M. Gibson and L. E. Brus, J. Chem. Phys., 80, 4464 (1984).
33. C. M. Wolfe, N. Holonyak Jr. and G. E. Stillman, Physical Properties of Semiconductors, 1st ed., Prentice- Hall Inc., New Jersey (1989).
34. S. Sapra and D. D. Sarma, Phys. Rew. B, 69, 125304 (2004)
35. D. A. Skoog, F. J. Holler and D. M. West, Fundamentals of Analytcal Chemistry, 2nd ed., Saunders College Publishong (1996).
36. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll and L. E. Brus, J. Am. Chem. Soc, 112, 1327 (1990).
37. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).
38. J. E. Bowen Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem., 98, 4109 (1994).
39. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawnedi, J. Phys. Chem. B, 101, 9463 (1997).
40. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).
41. X. peng, J. Wickmham and A. P. Alivisatos, J. Am. Chem. Soc, 120, 5343 (1998).
42. X. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. V. Kadavanich and A. P. Alivisatos, Nature, 404, 59 (2000).
43. Z. A. Peng and X. peng, J. Am. Chem. Soc., 123, 183 (2001)
44. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B, 102, 3655 (1998).
45. D. J. Norris, N. Yao, F. T. Charnock and T. A. kennedy, Nano Lett., 1, 3 (2001).
46. D.V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano. Lett., 1, 207 (2001).
47. L. Qu, Z. A. Peng, and X. Peng, Nano Lett., 1, 333 (2001).
48. L. Qu and X. Peng, J. Am. Chem. Soc., 124, 2049 (2002).
49. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).
50. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll and L.E. Brus, J. Am. Chem. Soc., 112, 1327 (1990).
51. M. C. Schlamp, X. Pneg and A. P. Alivisatos, J. Appl. Phys., 82, 5837 (1997).
52. P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2, 781 (2002).
53. C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber and J. M. White, J. Phys. Chem., 96, 3812 (1992).
54. M. Danek, K. F. Jensen, C. B. Murray and M.G. Bawendi, Chem. Mater., 8, 173 (1996).
55. J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic and M. G. Bawendi, Angew. Chem. Int. Ed., 43, 2154 (2004).
56. N. Myung, Y. Bae and A. J. Bard, Nano Lett., 3, 1053 (2003).
57. S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner and C. S. Yun, Chem. Mater., 24, 1576 (2002).
58. F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffiu and M. G. Bawendi, J. Am. Chem. Soc., 122, 2532 (2000).
59. H. Okuyama, K. Nakono, T. Miyajima and K. Akimoto., Jpn. J. Appl. Physics, 30, L1620 (1991).
60. 陳力俊等,材料電子顯微鏡學,行政院國家科學委員會精密儀器發展中心,台灣 ( 1997).
61. 吳泰伯,許樹恩,X光繞射原理與材料結構分析,中國材料科學學會,台灣(1996).
62. 賴耿陽編著,核磁共振之實用- FT NMR的利用法,復漢出版社,台灣 (2001).
63. 黃文雄等編審,儀器總覽-化學分析儀器,行政院國家科學委員會精密儀器發展中心,台灣 ( 1999).
64. H. Du, R. A. Fuh, J. Li, A. Corkan and J. S. Lindsey, Photochemistry and Photobiology, 68, 141 (1998).
65. R. F. Kubin and A. N. Fletcher, J. Lumin., 27, 455 (1982).
66. T. A. Bang, S. H. Choe, B. N Park. M.S. Jin and W.T. Kim, Semicond. Sci. Technol., 11, 1159 (1996).
67. Asahi Research Center Co., Ltd. Edited and S. I. Sasaki supervised, Handbook of proton-NMR spectra and data, Academic Press, Tokyo (1985).
68. C. Zhang, S. O’Briem and L. Balogh, J. Phys. Chem. B, 106, 10316 (2002).
69. J. F. Suyver, Synthesis, Spectroscopy and simulation of doped nanocrystals, Proefschrift Universiteit Utrecht (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top