跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嚴佩瑜
研究生(外文):Pay-Yu Yan
論文名稱:鍺中間層厚度對鎳鍺矽系統反應過程的影響
論文名稱(外文):The effect of different thickness of Ge interlayers on the Ni / Ge / Si system
指導教授:蔡哲正
指導教授(外文):Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:92
中文關鍵詞:矽化物相變化
外文關鍵詞:silicidephase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們將探討Ge中間層厚度的增加對Ni/Ge/Si系統反應過程的影響。
  我們利用逸散蒸鍍源(effusion cell)分別鍍上12、20、30nm的Ge中間層,再利用電子束蒸鍍30nm的Ni。將鍍完膜的試片,經不同溫度(500~700℃)及時間(1~18小時)的退火,並即時(in situ)量測試片曲率後,利用四點探針、X光繞射分析儀、Auger電子能譜儀、穿透式電子顯微鏡附能量散佈光譜儀等儀器來觀察退火過後試片的情形。
實驗結果顯示,Ge中間層較薄的試片在較低溫(500℃)持溫退火過後,形成Ge (NiSi1-zGez、NiSi1-yGey)/ NiSi1-zGez(Si1-xGex、Ge)/Si的結構(其中y、x>z),隨著持溫時間的增加,表面層Ge的比例亦增高。而在較高溫(700℃)持溫退火過後,形成橫向的NiSi1-zGez /Si1-xGex /NiSi1-zGez 三明治夾層結構,我們推測這是由於Si1-xGex向上成長所造成的結果,而隨著持溫時間的增加,Si1-xGex相中Ge的比例增加,而NiSi1-zGez相中的z值沒有改變。
對於Ge中間層較厚的試片(30nm)在低溫(500℃)持溫退火形成Ge、NiSi1-yGey、NiSi1-zGez/ NiSi1-zGez、Si1-xGex、Ge/NiSi2/Si結構。在高溫(700℃)持溫退火則形成橫向的NiSi1-zGez or NiSi2/Si1-xGex/ NiSi1-zGez or NiSi2三明治夾層結構,而表面有一層薄薄的Si1-xGex,我們推測此結構亦是由於Si1-xGex向上成長所造成,而隨著退火時間的增加NiSi2成長,而NiSi1-zGez逐漸減少。
比較不同Ge中間層厚度的試片,較厚Ge中間層厚度的試片(30nm)較先形成NiSi2,而Ge中間層厚度較薄的試片,即使經過高溫長時間退火(700℃18小時)也未有NiSi2形成。這是由於Ge較厚的試片在退火時,Ni原子擴散受到Ge中間層的阻擋,而在Si界面先形成NiSi2,此與一般常見鎳矽化物生成的順序有相當大的差異,我們將在論文中,利用有效生成熱的觀點,對實驗結果提出合理的說明。
In this thesis, we will investigate the influence of thickness of Ge interlayer on the reaction process of Ni/Ge/Si system.
  We use effusion cell to deposit 12, 20, and 30nm Ge interlayer, and then deposit 30nm Ni by electron beam evaporate. During the annealing process at different temperature(500, 600, and 700℃) with different time(1~18 hr), we measure the curvature of the samples in situ. After annealing, the samples were investigated by four-point probe, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), and transmission electron microscopy(TEM) with energy dispersion spectrometer(EDX).
The result shows that if the Ge interlayer is below 20 nm, the samples formed Ge (NiSi1-zGez、NiSi1-yGey)/ NiSi1-zGez(Si1-xGex、Ge)/Si (y、x>z) structure after annealing at 500℃. As the annealing time increases, the ratio of Ge in the upper layer increases. When the annealing temperature raises to 700℃, the samples’ structures change into transverse NiSi1-zGez /Si1-xGex /NiSi1-zGez sandwich structure. We speculate that this is because the Si1-xGex grain grows upwardly. The percentage of Ge in the Si1-xGex grain increases, but does not change in the NiSi1-zGez grain as the annealing time increases at 700℃.
The samples’ structures are Ge、NiSi1-yGey、NiSi1-zGez/ NiSi1-zGez、Si1-xGex、Ge/NiSi2/Si after annealing at 500℃ as the Ge interlayer is 30nm. The structures transfer into transverse NiSi1-zGez or NiSi2/Si1-xGex/ NiSi1-zGez or NiSi2 sandwich structures, and a thin Si1-xGex layer forms at surface after annealing at 700℃. We speculate that it is also because the Si1-xGex grain grows upwardly. The NiSi2 grain grows but the NiSi1-zGez grain decreases when the annealing time increases.
NiSi2 appears early for the samples of 30nm Ge interlayer, and doesn’t be found even the annealing condition is 700℃ for 18hrs if the samples have Ge interlayer below 20nm. This is because when the thicker Ge interlayer anneals, the diffusion of Ni will be obstructed, and Ni will form NiSi2 in the Si surface. This is very different from normal nickel silicide forming sequence. We will bring up reasonable explanations to the experiment results by using the effective heat of formation.
摘要………………………………………………………………… I
Abstract…………………………………………………………… II
圖目錄……………………………………………………………… VI
表目錄……………………………………………………………… VIII
第一章 簡 介 1
1.1 矽化物之應用 1
1.2 金屬矽化物之種類 2
1.3 金屬矽化物之製程 3
1.3.1 salicide 製程 3
1.3.2 Polycide製程 4
1.4 在SALICIDE製程中常用的矽化物 5
1.5 研究動機與目標 7
第二章 實驗方法與分析儀器 11
2.1 實驗規劃與流程 11
2.2 試片的清洗 11
2.3 薄膜沉積 12
2.4 歐傑電子能譜儀(Auger Electron Spectroscopy, AES) 13
2.5 In Situ曲率量測之試片製備 13
2.6 In Situ曲率量測 14
2.6.1 薄膜應力的產生與影響 14
2.6.2 薄膜應力量測理論 14
2.6.3 掃瞄雷射光學系統 16
2.7 真空退火 17
2.8 片電阻電性量測 17
2.9 X光繞射分析(X�{Ray Diffraction, XRD) 18
2.10 穿透式電子顯微鏡之試片製備(截面式(Cross�{Section))19
2.11 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)附能量散佈光譜儀(Energy Dispersion Spectroscopy, EDS) 20
第三章 結果與討論 21
3.1曲率與片電阻 21
3.2 XRD 23
3.2.1 500℃不同持溫時間 24
3.2.2 700不同持溫時間 25
3.3 TEM與EDX 25
3.3.1 500℃ Ge 20nm TEM與EDX 26
3.3.2 600℃ Ge 20nm TEM與EDX 27
3.3.3 700℃ Ge 20nm TEM與EDX 28
3.3.4 500℃ Ge 30nm TEM與EDX 28
3.3.5 700℃ Ge 30nm TEM與EDX 29
第四章 結論 32
Reference 34

圖 目 錄

圖 1.1 SALICIDE 製程圖……………………………………………………… 41
圖 1.2 POLYCIDE 製程圖……………………………………………………… 41
圖1.3 (a)傳統元件及(b)salicide 結構的source/drain部份……… 42
圖 1.4 (a) 傳統電晶體元件的局部(layout)設計(b) 使用salicide電晶體元件的局部(layout)設……………………………………………………… 42
圖 1.5 Ni-Si相圖……………………………………………………………… 43
圖 1.6 Ni/Si0.75Ge0.25系統的反應示意圖……………………………………… 44
圖 1.7 Ni/poly-Si1-xGex系統不同溫度退火後的TEM圖形…………………… 45
圖 1.8 (a)600℃的三元相平衡圖(b)750℃的三元相平衡圖(c)平衡相成分的移動路徑………………………………………………………………………
46
圖 1.9 在定溫下隨退火時間增加,NiSi1-xGex和Si1-zGez的三元平衡路…… 47
圖 2.1 實驗步驟流程………………………………………………………… 55
圖 2.2 真空離子槍濺鍍附逸散蒸鍍源真空腔……………………………… 56
圖 2.3 Auger電子產生之機構示意圖………………………………………… 57
圖2.4 薄膜與基材之相對應力與力矩關係示意圖…………………………… 57
圖2.5 於矽基材上,薄膜受拉應力與壓應力示意圖………………………… 57
圖2.6 臨場曲率量測之光學系統架構圖……………………………………… 58
圖2.7 曲率量測之光學原理示意圖 (a)平坦未受應變之試片(b)受應力之試片………………………………………………………………………………
59
圖2.8 退火真空腔架構圖……………………………………………………… 60
圖2.9 四點探針示意圖………………………………………………………… 61
圖3.1 (a)、(b)、(c)分別顯示Ge中間層厚度為 12、20、30nm的試片,
剛沈積(As-deposited)完後的AES縱深分析結果……………………………
62
圖3.2 (a) Ge中間層厚度12nm試片在450℃持溫9小時曲率與溫度的圖形(b) Ge中間層厚度12nm試片在450℃持溫9小時曲率與時間圖形…………………………………………………………………………………

63
圖3.3 Ni(30nm)/Ge(6nm)/Si系統中,片電阻值隨溫度變化圖…………… 64
圖3.4 試片在不同條件下退火後的片電阻值………………………………… 64
圖3.5 中間層Ge12nm的試片500℃持溫9小時的曲率圖形………………… 65
圖3.6 中間層Ge12nm的試片600℃持溫9小時的曲率圖形 ……………… 65
圖3.7 中間層Ge12nm的試片700℃持溫7小時的曲率圖形 ……………… 65
圖3.8 Ge中間層厚度12nm經500℃不同持溫時間退火過後的XRD圖形… 66
圖3.9 Ge中間層厚度20nm經500℃不同持溫時間退火過後的XRD圖形… 67
圖3.10 Ge中間層厚度30nm經500℃不同持溫時間退火過後的XRD圖形… 68
圖3.11 Ge中間層厚度12nm經700℃不同持溫時間退火過後的XRD圖形… 69
圖3.12 Ge中間層厚度20nm經700℃不同持溫時間退火過後的XRD圖形… 70
圖3.13 Ge中間層厚度30nm經700℃不同持溫時間退火過後的XRD圖形… 71
圖3.14 Ge中間層厚度20nm,退火500℃持溫一小時TEM圖形及EDX結果… 72
圖3.15 Ge中間層厚度20nm,退火500℃持溫1小時Auger縱深成分分析… 72
圖3.16 Ge中間層厚度20nm,退火500℃持溫3小時TEM圖形及EDX結果… 73
圖3.17 Ge中間層厚度20nm,退火500℃持溫12小時TEM圖形及EDX結果…………………………………………………………………………………
74
圖3.18 Ge中間層厚度20nm,退火500℃持溫12小時Auger縱深成分分析…………………………………………………………………………………
74
圖 3.19 Ge 12、20 nm試片, 退火至500℃反應示意圖……………………… 75
圖3.20 Ge中間層厚度20nm,退火600℃持溫9小時TEM圖形及EDX結果… 76
圖3.21 Ge 12、 20 nm試片,退火至 600℃反應示意圖…………………… 77
圖3.22 (a)、(b)、(c)分別為Ge中間層厚度20nm,退火700℃持溫1、7、18小時後TEM圖形及EDX結果…………………………………………………
78
圖3.23 Ge 12、 20 nm試片,由 600℃至 700℃退火反應示意圖………… 79
圖3.24 (a)、(b)、(c) 中間層厚度為30nm500℃退火三個小時TEM圖形及EDX結果………………………………………………………………………
80
圖3.25 中間層厚度為30nm500℃退火3個小時下層薄膜和Si界面的高分辨晶格影像圖……………………………………………………………………
81
圖3.26 Ge中間層厚度30nm,退火500℃持溫3小時Auger縱深成分分析 81
圖3.27 中間層厚度為30nm700℃退火7小時TEM圖形及EDX結果………… 82
圖3.28 中間層厚度為30nm700℃退火18小時TEM圖形及EDX結果………… 83
圖3.29 中間層厚度30nm700℃退火18個小時高分辨晶格影像圖………… 84
圖3.30 Ge20和Ge30nm試片退火時的反應過程比較示意圖………………… 85
圖3.31 Ge 30 nm試片,由 500℃至 700℃退火反應示意圖………………… 86

表 目 錄

表 1.1 週期表元素形成矽化物一覽表………………………………………… 48
表 1.2近貴金屬及溫金屬矽化物性質比較表………………………………… 49
表 1.3 Ni, Ti, and Co 矽化物之晶體結構、晶格常數和密度……………… 50
表 1.4 Ni, Ti, and Co矽化物之動力學資料………………………………… 51
表 1.5 TiSi2, CoSi2 and NiSi 優缺點比較……………………………………… 52
表 1.6 IC未來的需求表………………………………………………………… 53
表 1.7 常用矽化物的重要性質………………………………………………… 54
表3.1粉末繞射峰值…………………………………………………………… 87
[1] J. P. Gambino, E. G. Colgan, “Silicides and Ohmic Contacts”, 52, 99 (1998).
[2] K. K. Ng and W. T. Lynch, “The Impact of Intrinsic Series Resistance on MOSFET Scaling”, IEEE Trans. Electron Devices, ED-34, 5.3 (1987).
[3] K. C. Saraswat and F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delay of VLSI Circuits”, IEEE Trans. Electron Devices, ED-29, 645 (1982).
[4] D. B. Scott, W. R. Hunter and H. Shichijo. “A Transmission Line Model for Silicide Diffusion Impact on the Performance of VLSI Circuits”, IEEE Trans. Electron Device, ED-29, 651 (1982).
[5] C. T. Chang, M. Arienzo, D. D. Tang and R. D. Isaac, “A Schottky Barrier Diode with Self-Aligned Floating Guard Ring”, IEEE Trans. Electron Devices, ED-31, 1492 (1984).
[6] S. Tohyama, K. Masubuchi, K. Konuma, H. Azuma, A. Tanabe, H. Utsumi, N. Teranishi, E. Takano, S. Yamgata, M. Hijikawa, H. Sahara, T. Muramatsu, T. Seki, T. Ono and H. Goto, “A High Fill Factor and Progressive Scan PtSi Schottky-Barrier IR-CCD Image Sensor Using New Wiring Technology”, IEEE Trans. Electron Devices ED-42, 1433 (1995).
[7] J. N. Winnerl, R. W. Fathauer, S. Mantl, L. J. Schowalter and K. N. Tu (eds.), “Silicides, Germanoides and Their Interfaces”, Vol. 320, Materials Research Soc., Pittsburgh, PA, 1994. P37.
[8] J. S. Choi, S. H. Paek, Y. S. Hwang, S. H. Choi, D. W. Kim, H. K. Moon, J. K. Chung, W. S. Paek, T. U. Sim and J. G. Lee, “Characteristicsof TiSi2 Contact to BF2-Doped Single-Silicon”, J. Mater. Sci. 28, 4878 (1993).
[9] S. P. Murarka, “Silicides for VLSI Applications” Academic New York, (1983)
[10] G. Ottaviani, “Review of Binary Alloy Formation by Thin Film Interactions”, J. Vac. Sci. Technol. 16, 1112 (1979).
[11] K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2”, Material Science and Engineering, R11, (1993)
[12] S. P. Murarka, “Metallization: Theory and Practice for VLSI and ULSI”, Butterworth-Heinemann, (1993).
[13] S. P. Murarka, “Silicides for VLSI Applications”, Academic Press, (1983).
[14] K. Maex and M. V. Rossum, “Properties of Metal Silicides”, Short Run Press, (1995).
[15] J. P. Gambino and E. G. Colgan, “Silicides and Ohmic Contacts”, Materials Chemistry and Physics, 52, 99-146 (1998).
[16] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi Salicide Technology for Scaled CMOS”, Microelectronic Engineering, 60, 157-169 (2002).
[17] J. A. Kittle et al., “Salicides and alternative technologies for future ICs: Part 1”, Solid-State Technol . , 4 2, pp.81-92 (June, 1999). .
[18] R. P. Apte et al., “Use of a TiN cap to attain low sheet resistance for scaled TiSi2 on sub-half-micrometer polysilicon lines”, IEEE Electron Device Lett., EDL - 17, pp.506-508 (1996).
[19] K. Maex et al., “Self-aligned CoSi2 for 0.18 μm and below”, IEEE Trans. Electron Devices, ED - 4 6, pp.1545-1550(1999).
[20] T. Iinuma et al., Symp. VLSI Technol . pp.188-189 (1998).
[21] T. Ohguro et al., “Analysis of resistance behavior in Ti- and Ni-salicided polysilicon films”, IEEE Trans. Electron Devices, E D - 4 1, pp.2305-2317(1994).
[22] T. Ohguro et al., IEDM Tech, Digest. pp.453-456 (1995).
[23] J. Chen et al., “Comparison of TiSi2, CoSi2, and NiSi for Thin-Film Silicon-on-Insulator Applications”, J. Electrochem. Soc., 1 4 4, p.2437 (1997).
[24] K. N. Tu and J. W. Mayer, “Silicide Formation, in Thin Films-Interdiffusion and Reactions”, edited by J. M. Poate, K. N. Tu, and J. M. Mayer, Wiley, New York, (1978).
[25] K. Maex and M. V. Rossum, “Properties of Metal Silicides”, Short Run Press, (1995).
[26] T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI”, IEEE Transactions on Electron Devices, 42(5), 915-922 (1995).
[27] D. X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, “Material Aspects of Nickel Silicide for ULSI Applications”, Thin Solid Films, 326, 143-150 (1998).
[28] C. J. Choi, J. H. Ku, S. Choi, K. Fujiwara, J. T. Moon, “Ni Salicide Technology for Deep Sub-Quarter Micron”, Proc. ESC Symp. ULSI Process Integration, PV-2001-2, 76-77 (2000).
[29] M. Qin, M. C. Poon, and C.Y. Yuen, “A Study of Nickel Silicide Film as a Mechanical Material”, Sensors and Actuators, 87, 90-95 (2000).
[30] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishuyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of Resistance Behavior in Ti- and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron Devices, 41(12), 2305-2317 (1994).
[31] F. M. d’Heurle, J. Mater. Res. 3, 167 (1988).
[32] S. Nygren, D. Caffin, M. O¨ stling, and F. M. d’Heurle, “Morphological instabilities of nickel and cobalt silicides on Silicon”, Appl. Surf. Sci. 53, 87 (1991)
[33] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au Additions on the Stability and Epitaxy of NiSi2 Films on (111)Si”, J. Applied Physics, 84(5), 2583-2590 (1998).
[34] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, T. Osipowicz, and A. See, “Layer Inversion of Ni(Pt)Si on Mixed Phase Si Films”,Electrochem. Solid-State Lett. 5, G15 (2002).
[35] J. F. Liu, J. Y. Feng, and J. Zhu, “Film Thickness Dependence of the NiSi-to-NiSi2 Transition Temperature in the Ni/Pt/Si(100) System”, Applied Physics Letters, 80(2), 270-272 (2002).
[36] L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, and F. M. Pan, “Formation of Ni Silicides on (001)Si with a Thin Interposing Pt Layer”, J. Vac. Sci. Technolo. A 18(4), 1176-1179 (2000).
[37] J. F. Liu, H. B. Chen, and J. Y. Feng, “Enhanced Thermal Stability of NiSi Films on Si(111) Substrates by a Thin Pt Interlayer”, J. Crystal Growth, 220, 488-493 (2000).
[38] J. F. Liu, H. B. Chen, J. Y. Feng, and J. Zhu, “Improvement of the Thermal Stability of NiSi Films by Using a Thin Pt Interlayer”, Applied Physics Letters, 77(14), 2177-2179 (2000).
[39] J. S. Maa, Y. Ono, D. J. Tweet, F. Zhang, and S. T. Hsu, “Effect of Interlayer on Thermal Stability of Nickel Silicide”, J. Vac. Sci. Technol. A. 19(4), 1595-1599 (2001).
[40] C.J. Tsai, P.L. Chung, and K.H. Yu, “Stress evolution of Ni/Pd/Si reaction system under isochronal annealing”, Thin Solid Films 365, 72 (2000).
[41] Jer-shen Maa, Yoshi Ono, Douglas J. Tweet, Fengyan Zhang, and Sheng Teng Hsu, “Effect of interlayer on thermal stability of nickel silicide”, J. V. Sci. Tech. A 19, 1595 (2001).
[42] T. H. Hou, T. F. Lei, and T. S. Chao, “Improvement of Junction Leakage of Nickel Silicided Junction by a Ti-Capping Layer”, IEEE Electron Device Letters, 20(11), 572-573 (1999).
[43] W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a Titanium Cap in Reducing Interfacial Oxides in the Formation of Nickel Silicide”, J. Applied Physics, 91(5), 2901-2909 (2002).
[44] L. W. Chen, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of Nitrogen Ion Implantation on the Formation of Nickel silicide Contacts on Shallow Junctions”, Thin Solid Films, 355-356, 412-416 (1999).
[45] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi Salicide Process Using Presilicide N2+ Implant for MOSFETs”, IEEE Electron Device Letters, 21(12), 566-568 (2000).
[46] E. M. Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, “Role of the Substrate Strain in the Sheet Resistance Stability of NiSi Deposited on Si(100)”, J. Applied Physics, 85(7), 3614-3618 (1999).
[47] J. C. Bean, “Silicon-Based Semiconductor Hetrostructures-Column IV Bandgap Engineering”, Proc. IEEE 80, 571 (1992)
[48] H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter, H. G. Grimmeiss, “Ultrathin Simgen Strained Layer Superlatticees-A Step Towards Si Optoelectroics”, Semicond. Sci. Technol. 1, 1127 (1992)
[49] P.-E. Hellberg, S.-L. Zhang, and C. S. Petersson, “Work function of boron-doped polycrystalline SixGe1-x films”, IEEE Electron Device Lett. EDL-18, 456 (1997).
[50] S. Gannavaram, N. Pesovic, and M. C. O¨ ztu¨rk, Tech. Dig. - Int. Electron Devices Meet. 2000, 437 (2000).
[51] K. L. Wang, and R. P. G. Karunadiri, “SiGe/Si Electronics and Optoelectronics”, J. Vac. Sci. Technol. B11, 1159 (1993)
[52] G. L. Zhou and H. Morkoc, “Si/SiGe Hetrostructures and Device”, Thin Solid Films 231, 125 (1993)
[53] T. B. Massaliki, J. L. murray, L. H. Bermett, and H. Baker, “Binary Alloy Phase Diagrams”, American Society for Metals, Metals Park, Ohio”, (1986).
[54] K. L. Pey, S. Chattopadhyay, W. K. Choi, Y. Miron, E. A. Fitzgerald and D. A. Antoniadis, T. Osipowicz, “Stability and Composition of Ni-Germanosilicided Si1-xGex Films”, J. Vac. Sci. Technol. B 22(2), 852(2004).
[55] T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S.-L. Zhang, “Morphologyical and Phase Stability of Nickel-Germanosilicide on Si1-xGex Under Thermal Stess”, J. Appl. Phys. 92, 7193 (2002).
[56] H. Zhao, K. L. Pey, W. K. Choi, S. Chattopadhyay, E. A. Fitzgerald, D. A. Antoniadis, and P. S. Lee, “Interfacial Reactions of Ni on Si1-xGex (x=0.2, 0.3) at Low Temperature by Rapid Thermal Annealing”, J. Appl. Phys. 92, 214 (2002).
[57] J. Seger, S.-L. Zhang, D. Mangelinck, and H. H. Radamson, “Increased Nucleation Temperature of NiSi2 in the Reaction of Ni Thin Films with Si1-xGex”, Appl. Phys.Lett. 81, 1978 (2002).
[58] K. L. Pey, W. K. Choi, S. Chattopadhyay, H. Zhao, E. A. Fitzgerald, D. A. Antoniadis, and P. S. Lee, “Thermal Reaction of Nickel and Si0.75Ge0.25 Alloy” J. Vac. Sci. Technol. A 20, 1903 (2002).
[59] Jian Li, Q. Z. Hong and J. W. Mayer, “Interfacial Reaction Between a Ni/Ge Bilayer and Silicon (100)”, J. Appl. Phys. 67 2506(1990)
[60] R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Iyer, “Intertfacial Reaction Between Ni and MBE Grown SiGe Alloy.”, J. Electrochem. Soc. 135, 3161 (1988).
[61] J.-S. Luo, W.-T. Lin, C. Y. Chang, and W. C. Tsai, “Pulsed KrF laser annealing of Ni/Si0.76Ge0.24 films”, J. Appl. Phys. 82, 3621(1997).
[62] F. R. Deboer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, “Cohesion in Metals: Transition Metal Alloys”, North-Holland,Amsterdam, (1988).
[63] C. S. Pai, E. D. Marshall, S. S. Lau, W. K. Chu, “Interminxing Between Germanium and Silicon Thin Films in the Presence of a Fast Interstitial Diffuser”, Thin Solid Films 136, 37(1986)
[64] D. B. Aldrich, F. M. d’Heurle, D. E. Sayers, and R. J. Nemanich, “Interface stability of Ti/Si/Ge and SiGe alloys: Tie lines in the ternary equilibrium diagram”, Phys.Rev. B 53, 16279 (1996).
[65] C. Detavernier, T. R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 nucleation in the presence of Ge”, Thin Solid Films 384, 243 (2001).
[66] F. Wald and S. J. Michalik, J. Less-Common Met. 24, 277 (1971).
[67] P.-E. Hellberg, S.-L. Zhang, F. M. d’Heurle, and C. S. Petersson, “Oxidation of silicon–germanium alloys. II. A mathematical model”, J. Appl. Phys. 82, 5779 (1997) ; Mater. Res. Soc. Symp. Proc. 533, 111 (1998).
[68] 郭政彰,“鍺或銥中間層薄膜對鎳矽化物之生成與熱穩定性之研究”,國立清華大學材料所碩士論文(2002).
[69] S. M. Sze, “VLSI Technology”, McGraw-Hill, 300-302(1983).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top