跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃世賢
論文名稱:化學氣相沉積二氧化鋯閘極介電薄膜
論文名稱(外文):The Study of Structure and Electricity on ZrO2 Thin Films Deposited by Chemical Vapor Deposition for Gate Dielectric Applications
指導教授:吳泰伯
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:161
中文關鍵詞:二氧化鋯化學氣相沈積高介電常數閘極介電材料
外文關鍵詞:ZrO2chemical vapor depositionhigh-kgate dielectrics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
In this work, ZrO2 thin films were studied as a replacement of SiO2 for gate dielectric beyond the 100-nm CMOS technology. In the first part, microstructural and electrical characteristics of as-grown ZrO2 thin films having different thicknesses of 1.2 to 10 nm were investigated. The films were grown on a p-Si substrate by chemical-vapor deposition (CVD) at 275o C. The ZrO2 films had a microstructure that changed from amorphous to polycrystalline with increasing film thickness. From the capacitance-voltage (C-V) relation of the Al/ZrO2/SiOx/p-Si capacitors, the density of the oxide-trapped charge drastically increased from 2.22 x 1010 to 3.54 x 1012 cm-2. Furthermore, an increase of interface-state density was also found from the increase of turn-around voltage in the current-voltage (I-V) relation. In addition, the leakage current from gate injection followed the direct tunneling of holes from substrate to gate before hard breakdown. However, for the thicker films, the leakage current changed to Fowler-Nordheim tunneling.
Second, we investigated the effects of post-annealing on the bulk and interfacial characteristics of ultrathin ZrO2 films. The interfacial layer (IL) is mainly composed of Zr-silicate for annealing in N2, but it is mostly SiO2 for annealing in O2. The annealing also effectively reduces the oxide trapped-charge density in ZrO2, as demonstrated by the reduction of hysteresis in the capacitance-voltage relation. Lower leakage current from substrate injection in association with the reduction of depletion layer, was found due to the growth of Zr-silicate IL in N2 annealing, but the leakage from gate injection increased in conjunction with the crystallization of ZrO2 layer. In contrast, the relatively thick SiO2 IL formed in O2 annealing reduces the leakage for both substrate and gate injection. There is also a significant shift of the turn-around voltage from inversion to accumulation, but not with voltage swept back.
Finally, we have reported the temperature dependence of current density characteristics measured from 298 to 423 K. For substrate injection, the increase of leakage current well agrees with the temperature dependence of electron concentration in p-type Si. For gate injection, the leakage current is nearly T-independent (D-T conduction) at low voltage, while the leakage behavior at higher voltage changes from field-dependence (P-F conduction) for the as-deposited ZrO2 to either strong T-dependence (S-K conduction) for N2–annealed specimens or insensitive to temperature (F-N conduction) for O2–annealed specimens. Different models in energy-band diagram are proposed to illustrate the conduction mechanisms from direct tunneling, P-F hopping, Schottky thermal emission, to F-N tunneling.
ABSTRACT -------------------------------------------------------- I
ACKNOLEDGEMENT (Chinese) ---------------------------- II
TABLE OF CONTENTS --------------------------------------- III
LIST OF TABLES ----------------------------------------------- IV
LIST OF FIGURES ---------------------------------------------- V

CHAPTER 1 ------------------------------------------------------ 1
INTRODUCTION --------------------------------------------------------- 1
1.1. IC scaling in Metal-Oxide-Semiconductor devices ------------- 1
1.2. Oxide defect charges in the MOS capacitor structure ---------- 2
1.3. Motivation ----------------------------------------------------------- 5

CHAPTER 2 ---------------------------------------------------- 12
LITERATURES REVIEW --------------------------------------------- 12 2.1. Scaling limits for current SiO2 gate dielectrics ----------------- 12
2.1.1. Degradation of ultra-thin SiO2 in the insulating ability ---- 12

III
2.1.2. Threat of ultra-thin SiO2 reliability ---------------------------- 13
2.1.3. Decay of the resistant ability for the boron penetration ----- 14
2.1.4. Other fundamental limitations in ultra-thin SiO2 films ------ 15
2.2. Alternative high-k gate dielectrics -------------------------------- 17
2.3. Consideration on material properties ----------------------------- 26
2.3.1. Permittivity and barrier height ----------------------------------- 27
2.3.2. Thermodynamic stability with the Si substrate ---------------- 30
2.3.3. Interface engineering ---------------------------------------------- 31
2.3.4. Film surface morphology ----------------------------------------- 34
2.3.5. Compatibility of gate dielectrics with gate electrodes and Si -- 36
2.3.6. Process compatibility with the scaled CMOS device ---------- 40
2.4. Innovative structures for CMOS devices -------------------------- 41

CHAPTER 3 -------------------------------------------------------- 49
Thickness dependence of structural and electrical characteristics of ZrO2 thin films as grown on Si by chemical-vapor deposition
3.1. Introduction ------------------------------------------------------------- 49

III
3.2. Experimental ---------------------------------------------------------- 52
3.3. Results and discussion ----------------------------------------------- 54
3.3.1 Structural characterization ---------------------------------------- 54
3.3.2. Electrical characterization ---------------------------------------- 59
3.4. Conclusion ------------------------------------------------------------- 67

CHAPTER 4 ------------------------------------------------------ 84
Effects of post-annealing on the bulk and interfacial characteristics of ZrO2 gate dielectrics prepared on Si by metal-organic chemical vapor deposition
4.1. Introduction ----------------------------------------------------------- 84
4.2. Experimental ---------------------------------------------------------- 85
4.3. Results and discussion ----------------------------------------------- 87
3.3.1 Structural characterization ---------------------------------------- 87
3.3.2. Electrical characterization ---------------------------------------- 90
4.4. Conclusion ------------------------------------------------------------- 94


III
CHAPTER 5 ------------------------------------------------------ 108
The conduction mechanism of current leakage in ultra-thin ZrO2 gate dielectrics
5.1. Introduction ------------------------------------------------------------ 108
5.2. Experimental ----------------------------------------------------------- 109
5.3. Results and discussion ------------------------------------------------ 110
5.4. Conclusion ------------------------------------------------------------- 117

CHAPTER 6 ------------------------------------------------------- 128
Conclusions ------------------------------------------------------------------- 128

REFERENCE ----------------------------------------------------- 131
[1] G. E. Moore, “Lithography and the future of Moore's law,” Proc. SPIE, 2438, 2 (1995).
[2] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, SC-9, 256 (1974).
[3] http://www.itrs.net/2002_SIA_Roadmap/Home.htm.
[4] S.-H. Lo, D. A. Buchanan, and Y. Taur,“Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides,” IBM J. Res. Dev. 43, 327 (1999).
[5] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. Philip Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. IEEE, 89, 259 (2001).
[6] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact With silicon,” J. Mater. Res. 11, 2757 (1996).
[7] A. I. Kingon, J.-P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature (London), 406, 1032 (2000).
[8] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, 5243 (2001).
[9] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John Wiley & Sons, New York (1981).
[10] E. H. Nicollian and J. R. Brews, “Metal Oxide Semiconductor Physics and Technology,” Wiley, New York, 1982.
[11] J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Kim, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, and K. Fujihara, “Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 645.
[12] M. Balog, M. Schieber, M. Michman, and S. Patai, “The chemical vapor deposition and characterization of ZrO2 films from organo-metallic compounds,” Thin Solid Films, 47, 109 (1977).
[13] S. Y. Lee, H. Kim, P. C. Mclntyre, K. C. Saraswat, and J. S. Byun, “Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application,” Appl. Phys. Lett. 82, 2874 (2003).
[14] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B 18, 1785 (2000).
[15] S. Miyazaki, M. Narasaki, M. Ogasawara, and M. Hirose, “Characterization of ultrathin zirconium oxide films on silicon using photoelectron spectroscopy,” Microelectron. Eng. 59, 373 (2001).
[16] T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, “Band diagram and carrier conduction mechanism in ZrO2/Zr-silicate/Si MIS structure fabricated by pulsed-laser-ablation deposition,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 19.
[17] S. Ramanathan, G. D. Wilk, D. A. Muller, C.-M. Park, and C. McIntyre, “Growth and characterization of ultra-thin zirconia dielectrics grown by ultra-violet ozone oxidation,” Appl. Phys. Lett. 79, 2621 (2001).
[18] J. P. Chang and Y.-S. Lin, “Thermal stability of stacked high-k dielectrics on silicon,” Appl. Phys. Lett. 79, 3824 (2001).
[19] E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, “Ultra-thin high-k metal oxides on silicon: processing, characterization and integration issues,” Microelectron. Eng. 59, 341 (2001).
[20] S.-W. Nam, J.-H. Yoo, H.-Y. Kim, S.-K. Kang, D.-H. Ko, C.-W. Yang, H.-J. Lee, M.-H. Cho, and J.-H. Ku, “Study of ZrO2 thin films for gate oxide applications,” J. Vac. Sci. Technol. A 19, 1720 (2001).
[21] T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett. 76, 502 (2000).
[22] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys. 87, 484 (2000).
[23] R. C. Smith, T. Ma, N. Hoilien, L. Y. Tsung, M. J. Bevan, L. Colombo, J. Roberts, S. A. Campbell, and W. L. Gladfelter, “Chemical vapour deposition of the oxides of titanium, zirconium and hafnium for use as high-k materials in microelectronic devices. A carbon-free precursor for the synthesis of hafnium dioxide,” Adv. Mater. Opt. Electron. 10, 105 (2000).
[24] K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, “Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition,” J. Appl. Phys. 92, 1833 (2002).
[25] M. Copel, M. Gribelyuk, and E. Gusev, “Structure and stability of ultra-thin zirconium oxide layers on Si(001),” Appl. Phys. Lett. 76, 436 (2000).
[26] Y.-Z. Hu and S.-P. Tay, “Characterization of high-k dielectric ZrO2 films annealed by rapid thermal processing,” J. Vac. Sci. Technol. B 19, 1706 (2001).
[27] M. Houssa, V. V. Afanas'ev, A. Stesmans, and M. M. Heyns, “Polarity dependence of defect generation in ultra-thin SiO2/ZrO2 gate dielectric stacks,” Appl. Phys. Lett. 79, 3134 (2001).
[28] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, “The electronic structure at the atomic scale of ultra-thin gate oxides,” Nature (London) 399, 758 (1999).
[29] S. Tang, R. M. Wallace, A. Seabaugh, and D. King-Smith, “Evaluating the minimum thickness of gate oxide on silicon using first-principles method,” Appl. Surf. Sci. 135, 137 (1998).
[30] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, “Electronic properties of the Si/SiO2 interface from first principles,” Phys. Rev. Lett. 85, 1298 (2000).
[31] A. A. Demkov and O. F. Sankey, “Growth study and theoretical investigation of the ultrathin oxide SiO2-Si heterojunction,” Phys. Rev. Lett. 83, 2038 (1999).
[32] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, Ph. Roussel, and H. E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices, 45, 904 (1998).
[33] D. J. DiMaria and J. H. Stathis, “Non-Arrhenius temperature dependence of reliability in ultrathin silicon dioxide films,” Appl. Phys. Lett. 74, 1752 (1999).
[34] J. H. Stathis, “Percolation models for gate oxide breakdown,” J. Appl. Phys. 86, 5757 (1999).
[35] M. Cao, P. V. Voorde, M. Cox, and W. Greene, “Boron diffusion and penetration in ultrathin oxide with poly-Si gate,” IEEE Electron Device Lett. 19, 291 (1998).
[36] G. D. Wilk, Y. Wei, H. Edwards, and R. M. Wallace, “In situ Si flux cleaning technique for producing atomically flat Si(100) surfaces at low temperature,” Appl. Phys. Lett. 70, 2288 (1997).
[37] Y. Wei, R. M. Wallace, and A. C. Seabaugh, “Void formation on ultrathin thermal silicon oxide films on the Si(100) surface,” Appl. Phys. Lett. 69, 1270 (1996).
[38] Y. Wei, R. M. Wallace, and A. C. Seabaugh, “Controlled growth of SiO2 tunnel barrier and crystalline Si quantum wells for Si resonant tunneling diodes,” J. Appl. Phys. 81, 6415 (1997).
[39] S. Tang, Y. Wei, and R. M. Wallace, “Energetics of void enlargement in thermally grown ultrathin Si-oxide on Si(001),” Surf. Sci. Lett. 387, L1057 (1997).
[40] P. K. Roy and I. C. Kizilyalli, “Stacked high-epsilon gate dielectric for giga-scale integration of metal-oxide-semiconductor technologies,” Appl. Phys. Lett. 72, 2835 (1998).
[41] I. C. Kizilyalli, R. Y. S. Huang, and P. K. Roy, “MOS transistors with stacked SiO2/Ta2O5/SiO2 gate dielectrics for giga-scale integration of CMOS technologies,” IEEE Electron Device Lett. 19, 423 (1998).
[42] D. Park, Y.-C. King, Q. Lu, T.-J. King, C. Hu, A. Kalnitsky, S.-P. Tay, and C.-C. Cheng, “Transistor characteristics with Ta2O5 gate dielectric,” IEEE Electron Device Lett. 19, 441 (1998).
[43] G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures,” Appl. Phys. Lett. 73, 1517 (1998).
[44] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. R. 22, 269 (1998).
[45] R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y. H. Wong, R. B. van Dover, J. R. Kwo, and A. M. Sergent, “Defect dominated charge transport in amorphous Ta2O5 thin films,” J. Appl. Phys. 88, 850 (2000).
[46] R. A. McKee, F. J. Walker, and M. F. Chisholm, “Crystalline oxides on silicon: The first five mono-layers,” Phys. Rev. Lett. 81, 3014 (1998).
[47] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field effect transistors with SrTiO3 gate dielectric on Si,” Appl. Phys. Lett. 76, 1324 (2000).
[48] Z. Yu, J. Ramdani, J. A. Curless, J. M. Finder, C. D. Overgaard, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, J. R. Conner, and V. S. Kaushik, “Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy,” J. Vac. Sci. Technol. B 18, 1653 (2000).
[49] Z. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, and V. S. Kaushik, “Epitaxial oxide thin films on Si(001),” J. Vac. Sci. Technol. B 18, 2139 (2000).
[50] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100),” Appl. Phys. Lett. 75, 4001 (1999).
[51] L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris et al., “Gate quality doped high-k films for CMOS beyond 100 nm: 3-10 nm Al 2O3 with low leakage and low interface states,” Tech. Dig. Int. Electron Devices Meet. 1998, p. 605.
[52] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si,” Appl. Phys. Lett. 76, 176 (2000).
[53] A. Chin, C. C. Liao, C. H. Liu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” Tech. Dig. VLSI Symp. 1999, p. 135.
[54] D.-G. Park, H.-J. Cho, C. Lim, I.-S. Yeo, J.-S. Roh, C.-T. Kim, and J.-M. Hwang, “Characteristics of Al2O3 gate dielectric prepared by atomic layer deposition for giga scale CMOS DRAM devices,” Tech. Dig. VLSI Symp. 2000, p. 46.
[55] D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, and M. Copel, S. Guha, “80 nm polysilicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 223.
[56] R. M. Wallace and Y. Wei, “Dry oxidation resistance of ultra-thin nitride films: Ordered and amorphous silicon nitride on Si(111),” J. Vac. Sci. Technol. B 17, 970 (1999).
[57] M. Gurvitch, L. Manchanda, and J. M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Appl. Phys. Lett. 51, 919 (1987).
[58] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, “High epsilon gate dielectrics Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett. 77, 130 (2000).
[59] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Borjarczuk, and M. A. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Appl. Phys. Lett. 77, 2710 (2000).
[60] J. J. Chambers and G. N. Parsons, “Yttrium silicate formation on silicon: Effect of silicon pre-oxidation and nitridation on interface reaction kinetics,” Appl. Phys. Lett. 77, 2385 (2000).
[61] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10 Å,” Tech. Dig. VLSI Symp. 2000, p. 16.
[62] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsich, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices 44, 104 (1997).
[63] C. J. Taylor, D. C. Gilmer, D. Colombo, G. D. Wilk, S. A. Campbell, J. Roberts, and W. L. Gladfelter, “Does chemistry really matter in the chemical vapor deposition of titanium dioxide? Precursor and kinetic effects on the microstructure of polycrystalline films,” J. Am. Chem. Soc. 121, 5220 (1999).
[64] D. C. Gilmer, D. G. Colombo, C. J. Taylor, J. Roberts, G. Haustad, S. A. Campbell, H.-S. Kim, G. D. Wilk, M. A. Gribelyuk, and W. L. Gladfelter, “Low temperature CVD of crystalline titanium dioxide films using tetranitratotitanium (IV),” Chem. Vap. Deposition 4, 9 (1998).
[65] X. Guo, X. Wang, Z. Luo, T. P. Ma, and T. Tamagawa, “High quality ultra-thin (1.5 nm) TiO2-Si3N 4 gate dielectric for deep sub-micron CMOS technology,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 137.
[66] R. B. van Dover, “Amorphous lanthanide-doped TiOx dielectric films,” Appl. Phys. Lett. 74, 3041 (1999).
[67] M. Balog, M. Schieber, S. Patai, and M. Michman, “Thin films of metal oxides on silicon by chemical vapor deposition with organo-metallic compounds,” J. Cryst. Growth 17, 298 (1972).
[68] M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41, 247 (1977).
[69] M. Balog, M. Schieber, M. Michman, and S. Patai, “The characteristics of growth of films of zirconium and hafnium oxides by thermal decomposition of zirconium and hafnium beta-diketonate complexes in the presence and absence of oxygen,” J. Elec. Chem. Soc. 126, 1203 (1979).
[70] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultra-thin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 133.
[71] B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett. 76, 1926 (2000).
[72] L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultra-thin hafnium oxide gate dielectric,” IEEE Electron Device Lett. 21, 181 (2000).
[73] L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, “MOSFET devices with poly-silicon on single-layer HfO2 high-k dielectrics,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 35.
[74] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 31.
[75] J. Shappir, A. Anis, and I. Pinsky, “Investigation of MOS capacitors with thin ZrO2 layers and various gate materials for advanced DRAM applications,” IEEE Trans. Electron Devices ED-33, 442 (1986).
[76] W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 145.
[77] W.-J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. Kang, Y. Jeon, J. C. Lee, V. Kaushik. B.-Y. Nguyen, and L. Prabhu, “Performance of MOSFETs with ultra-thin ZrO2 and Zr silicate gate dielectrics,” Tech. Dig. VLSI Symp. 2000, p. 40.
[78] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra-thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 27.
[79] M. Houssa, V. V. Afanas'ev, A. Stesmans, and M. M. Heyns, “Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation,” Appl. Phys. Lett. 77, 1885 (2000).
[80] M. Houssa, M. Tuominen, M. Naili, V. Afanas'ev, A. Stesmans, S. Haukka, and M. M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks,” J. Appl. Phys. 87, 8615 (2000).
[81] R. C. Smith, N. Hoilien, C. J. Taylor, T. Z. Ma, S. A. Campbell, J. T. Roberts, M. Copel, D. A. Buchanan, M. Gribelyuk, and W. L. Gladfelter, “Low Temperature Chemical Vapor Deposition of ZrO2 on Si(100) Using Anhydrous Zirconium (IV) Nitrate,” J. Electrochem. Soc. 147, 3472 (2000).
[82] H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, “High permittivity thin film nanolaminates,” J. Appl. Phys. 87, 1921 (2000).
[83] J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids, 34, 153 (1979).
[84] J. C. Phillips, “Realization of a Zachariasen glass,” J. Non-Cryst. Solids, 47, 203 (1983).
[85] W. B. Blumenthal, “The Chemical Behavior of Zirconium,” (Van Nostrand, Princeton, 1958), pp. 201–219.
[86] L. Bragg, G. F. Claringbull, and W. H. Taylor, “Crystal Structures of Minerals,” (Cornell University Press, Ithaca, 1965), p. 185.
[87] G. D. Wilk and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett. 74, 2854 (1999).
[88] G. D. Wilk and R. M. Wallace, “Stable zirconium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett. 76, 112 (2000).
[89] R. D. Shannon, “Dielectric polarizabilities of inos in oxides and fluorides,” J. Appl. Phys. 73, 348 (1993).
[90] J. Robertson and C. W. Chen, “Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate,” Appl. Phys. Lett. 74, 1168 (1999).
[91] R. Beyers, “Thermodynamic considerations in refractory metal-silicon-oxygen systems,” J. Appl. Phys. 56, 147 (1984).
[92] S. Q. Wang and J. W. Mayer, “Reactions of Zr thin-films with SiO2 substrates,” J. Appl. Phys. 64, 4711 (1988).
[93] G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, “Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics,” Appl. Phys. Lett. 74, 2005 (1999).
[94] A. Kumar, D. Rajdev, and D. L. Douglass, “,” J. Am. Chem. Soc. 55, 439 (1972).
[95] Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, “Zirconium oxide based gate dielectrics with equivalent oxide thickness of less than 1.0 nm and performance of submicron MOSFET using a nitride gate replacement process,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 149.
[96] M. Ritala, K. Kukli, A. Rahtu, P. I. Raisanen, M. Leskela, T. Sajavaara, and J. Keinonen, “Atomic Layer Deposition of Oxide Thin Films with Metal Alkoxides as Oxygen Sources,” Science, 288, 319 (2000).
[97] S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng, and W. K. Choi, “Crystalline zirconia oxide on silicon as alternative gate dielectrics,” Appl. Phys. Lett. 78, 1604 (2001).
[98] J. M. Hergenrother, D. Monroe, F. P. Klemens, A. Kornblit, G. R. Weber, W. M. Mansfield, M. R. Baker, F. H. Baumann, K. J. Bolan, and J. E. Bower, “The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography independent gate length,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 75.
[99] S.-H. Oh, J. M. Hergenrother, T. Nigam, D. Monroe, F. P. Klemens, A. Kornblit, W. M. Mansfield, M. R. Baker, D. L. Barr, and F. H. Baumann, “50 nm Vertical Replacement-Gate (VRG) pMOSFETs,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 65.
[100] L. Risch, W. H. Krautschneider, F. Hofmann, H. Schäfer, T. Aeugle, and W. Rösner, “Vertical MOS transistors with 70 nm channel length,” IEEE Trans. Electron Devices 43, 1495 (1996).
[101] D. Hisamoto, T. Kaga, and E. Takeda, “Impact of the vertical SOI DELTA structure on planar device technology,” IEEE Trans. Electron Devices 38, 1419 (1991).
[102] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, and K. Asano, “Sub 50-nm FinFET: PMOS,” Tech. Dig. Int. Electron Devices Meet. 1999, p. 67.
[103] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, “Limits of gate-oxide scaling in nano-transistors,” VLSI Tech. Dig. 2000, p. 90.
[104] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,” Tech. Dig. VLSI Symp. 2000, p. 174.
[105] R. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, “30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays,” Tech. Int. Electron Devices Meet. 2000, p. 45.
[106] S. Y. Lee, H. Kim, P. C. Mclntyre, K. C. Saraswat, and J. S. Byun, “Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application,” Appl. Phys. Lett. 82, 2874 (2003).
[107] B. Kralik, E. K. Chang, and S. G. Louie, “Structural properties and quasiparticle band structure of zirconia,” Phys. Rev. B 57, 7027 (1998).
[108] W. Qi, R. Nieh, B. Lee, L. Kang, Y. Jeon, and J. C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application,” Appl. Phys. Lett. 77, 3269 (2000).
[109] S. Stemmer, Z. Chen, R. Keding, J. Maria, D. Wicaksana, and A. I.
Kingon, “Stability of ZrO2 layers on Si (001) during high-temperature anneals under reduced oxygen partial pressures,” J. Appl. Phys. 92, 82 (2002).
[110] Y.M. Sun, J. Lozano, H. Ho, H. J. Park, S. Veldman, J. M. White, “Interfacial silicon oxide formation during synthesis of ZrO2 on Si(100),” Appl. Surf. Sci. 161, 115 (2000).
[111] H.Zhong, G. Heuss, V. Misra, H. Luan, C. H. Lee, and D. L. Kwong, “Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics,” Appl. Phys. Lett. 78, 1134 (2001).
[112] C. R. Aita, M. D. Wiggins, R. Whig, C. M. Scanlan, and M. G-Josifovska, “Thermodynamics of tetragonal zirconia formation in a nanolaminate film,” J. Appl. Phys. 79, 1176 (1996).
[113] J. Aarik, A. Aidla, H. Mandar, T. Uustare, and V. Sammelselg, “Growth kinetics and structure formation of ZrO2 thin films in chloride-based atomic layer deposition process,” Thin. Solid. Films 408, 97 (2002).
[114] C. Perkins, B. Triplett, P. McIntyre, K. Saraswat, S. Haukka, and M.
Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett. 78, 2357 (2001).
[115] S. Ferrari, D.T. Dekadjevi, S. Spiga, G. Tallarida, C. Wiemer, and M. Fanciulli, “Structural and electrical characterization of ALCVD ZrO2 thin films on silicon,” J. Non-Crys. Solids 303, 29 (2002).
[116] K. Kukli, M. Ritala, and M. Leskela, “Low-Temperature Deposition of Zirconium Oxide-Based Nanocrystalline Films by Alternate Supply of Zr[OC(CH3)3]4 and H2O,” Chemical Vapor Deposition, 6, 297 (2000).
[117] S. Chatterjee , S.K. Samanta , H.D. Banerjee ,and C.K. Maiti, “Electrical properties of stacked gate dielectric (SiO2/ZrO2) deposited on strained SiGe layers,” Thin Solid Films, 422, 33 (2002).
[118] B. Cho, J. Wang, and J. Chang, “Metalorganic precursor decomposition and oxidation mechanisms in plasma-enhanced ZrO2 deposition,” J. Appl. Phys. 92, 4238 (2002).
[119] R.H. French, S. J. Glass, and F. S. Ohuchi, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2,” Phys. Rev. B 49, 5133 (1994).
[120] R. P. Vasquez, M. H. Hecht, F. J. Grunthaner, and M. L. Naiman, “X-ray photoelectron spectroscopy study of the chemical structure of thermally nitrided SiO2,” Appl. Phys. Lett. 44, 969 (1984).
[121] H. Watanabe, “Interface engineering of a ZrO2/SiO2/Si layered structure by in situ re-oxidation and its oxygen-pressure dependent thermal stability,” Appl. Phys. Lett. 78, 3803 (2001).
[122] M. Takeshi, F. Seiichi, and K. Yoshitake, “Interface characterization of thin ZrO2/SiO2 films on silicon,” International Workshop on Gate Insulators, Tokyo, p. 210 (2001).
[123] D. K. Schroder, “Semiconductor Material and Device Characterization,” (Wiley, New York, 1998).
[124] D. A. Neamen, “Semiconductor Physicals and Devices,” (Irwin, Chicago,1997).
[125] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's,” IEEE Electron Device Lett. 18, 209 (1997).
[126] S. Mudanai, L. F. Register, A. F. Tasch, and S. K. Banerjee, “Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs,” IEEE Electron Device Lett. 22, 145 (2001).
[127] T. W. Hickmott, “Dipole layers at the metal-SiO2 interface,” J. Appl. Phys. 51, 4269 (1980).
[128] R. Johnson, G. Lucovsky, and I. Baumvol, “Physical and electrical properties of noncrystalline Al2O3 prepared by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 19, 1353 (2001).
[129] K. Lim, D. Park, H. Cho, J. Kim, J. Yang, S. Choi, I. Yeo, and J. Park, “Electrical characteristics and thermal stability of n+ polycrystalline Si/ZrO2/SiO2/Si metal–oxide–semiconductor capacitors,” J. Appl. Phys. 91, 414 (2002).
[130] C. C. Hong, W. J. Liao, and J. G. Hwu, “Thickness-dependent stress effect in p-type metal–oxide–semiconductor structure investigated by substrate injection current,” Appl. Phys. Lett. 82, 3916
(2003).
[131] J. C. Wang, S. H. Chiao, C. L. Lee, and T. F. Lei, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film,” J. Appl. Phys. 92, 3936 (2002).
[132] T. Nguyen, D. A. Carl, S. V. Nguyen, and D. M. Dobuzinsky, “New leakage mechanism in sub-5-nm oxynitride dielectrics,” Appl.
Phys. Lett. 63, 1972 (1993).
[133] B. Brar, G. D. Wilk, and A. C. Seabaugh, “Direct extraction of the electron tunneling effective mass in ultrathin SiO2,” Appl. Phys. Lett. 69, 2728 (1996).
[134] C. Chaneliere, J. L. Autran, and R. A. Devine, “Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structures on Si,” J. Appl. Phys. 86, 480 (1999).
[135] Z. Xu, M. Houssa, S. D. Gendt, and M. Heyns, “Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks,” Appl. Phys. Lett. 80, 1975 (2002).
[136] M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S.
Haukka, and M. M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks,” J. Appl. Phys. 87, 8615 (2000).
[137] J. P. Chang and Y. S. Lin, “Dielectric property and conduction mechanism of ultrathin zirconium oxide films,” Appl. Phys. Lett. 79, 3666 (2001).
[138] T. Kauerauf, R. Degraeve, E. Cartier, B. Govoreanu, P. Blomme, B. Kaczer, L. Pantisano, A. Kerber, and G. Groeseneken, “Towards understanding degradation and breakdown of SiO2/high-k stacks,” Tech. Dig. Int. Electron Devices Meet. p.521 (2002).
[139] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H.
Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal–insulator–semiconductor structures and current transport mechanisms,” J. Appl. Phys. 93, 4788 (2003).
[140] K. Deguchi, A. Ishida, S. Uno, Y. Kamakura, and K. Taniguchi, “Degradation of direct-tunneling gate oxide under hot-hole injection,” Appl. Phys. Lett. 77, 1384 (2000).
[141] H. Yu, Y. T. Hou, M. F. Li, and D. L. Kwong, “Investigation of hole-tunneling current through ultrathin oxynitride/oxide stack gate dielectrics in p-MOSFETs,” IEEE Trans. Electron Devices, 49, 1158 (2002).
[142] A. Haque and K. Alam, “Accurate modeling of direct tunneling hole current in p-metal–oxide–semiconductor devices,” Appl. Phys. Lett. 81, 667 (2002).
[143] C. Chang, M. S. Liang, C. Hu, and R. W. Broderson, Tech. Dig. Int. Electron Devices Meet. p.194 (1983).
[144] H. Watanabe, “Interface engineering of a ZrO2/SiO2/Si layered structure by in situ reoxidation and its oxygen-pressure-dependent thermal stability,” Appl. Phys. Lett. 78, 3803 (2001).
[145] H. Fukumoto, M. Morita, and Y. Osaka, “Electrical characteristics of metal-insulator-semiconductor diodes with ZrO2/SiO2 dielectric films,” J. Appl. Phys. 65, 5210 (1989).
[146] T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78, 368 (2001).
[147] J. P. Chang and Y. S. Lin, “Thermal stability of stacked high-k dielectrics on silicon,” Appl. Phys. Lett. 79, 3824 (2001).
[148] C. M. Perkins, B. B. Triplett, P. C. Mcintyre, K. C. Saraswat, and E.
Shero, “Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics,” Appl. Phys. Lett. 81, 1417 (2002).
[149] H. Watanabe and N. Ikarashi, “Thermal decomposition of ZrO2/SiO2 bilayer on Si(001) caused by void nucleation and its lateral growth,” Appl. Phys. Lett. 80, 559 (2002).
[150] K. Y. Lim, D. G. Park, H. J. Cho, J. J. Kim, J. M. Yang, I. S. Choi, I. S.
Yeo, and J. W. Park, “Electrical characteristics and thermal stability of n+ polycrystalline Si/ZrO2/SiO2/Si metal oxide semiconductor capacitors,” J. Appl. Phys, 91, 414 (2002).
[151] R. Nieh, R. Choi, S. Gopalan, K. Onishi, C. S. Kang, H. J. Cho, S.
Kirshnan, and J. C. Lee, “Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics,” Appl. Phys. Lett. 81, 1663 (2002).
[152] J. Petry, O. Richard, W. Vandervorst, T. Conard, J. Chen, and V. Cosnier, “Effect of N2 annealing on AlZrO oxide,” J. Vac. Sci. Technol. A 21(4), 1482 (2003).
[153] H. Ishii, A. Nakajima, and S. Yokoyama, “Growth and electrical properties of atomic-layer deposited ZrO2/Si-nitride stack gate dielectrics,” J. Appl. Phys. 95, 536 (2004).
[154] H.Zhong, G. Heuss, V. Misra, H. Luan, C. H. Lee, and D. L. Kwong, “Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics,” Appl. Phys. Lett. 78, 1134 (2001).
[155] M. J. Guitter, J. P. Crocombette, and M. G. Soyer, “Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects,” Phys. Rev. B 63,
125117 (2001).
[156] V. V. Afanas and A. Stesmans, “Hydrogen-Induced Valence Alternation State at SiO2 Interfaces,” Phys. Rev. Lett. 80, 5176 (1998).
[157] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor)
Physics and Technology” (Wiley, New York, 2003).
[158] R. F. Pierret, IEEE Trans. Electron Devices 7, 869 (1972).
[159] Chih-Yi Liu, Bo-Yang Chen, and Tseung-Yuen Tseng, “Deep depletion phenomenon of SrTiO3 gate dielectric capacitor,” J. Appl. Phys. 95, 5602 (2004).
[160] R. M. Patrikar, R. Lal, and J. Vasi, “High field characteristics of metal-oxide-semiconductor capacitors with the silicon in inversion,” J. Appl. Phys. 73, 3857 (1993).
[161] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal–insulator–semiconductor structures and current transport mechanisms,” J. Appl. Phys. 93, 4788 (2003).
[162] T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, “Band diagram and carrier conduction mechanism in ZrO2/Zr-silicate/Si MIS structure fabricated by pulsed laser ablation deposition,” Tech. Dig. Int. Electron Devices Meet. 2000, p. 19.
[163] V. V. Afanas'ev, M. Houssa, A. Stesmans, and M. M. Heyns, “Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators,” Appl. Phys. Lett. 78, 3073 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊