跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭世勇
研究生(外文):Shih-yung Peng
論文名稱:利用聚苯乙烯模板結合溶膠凝膠技術製作規則孔洞二氧化矽薄膜研究
論文名稱(外文):Fabrication of inversed opal SiO2 films using sol-gel method coupled with polystyrene microsphere as template
指導教授:董瑞安
指導教授(外文):Ruey-an Doong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:75
中文關鍵詞:單層規則孔洞聚苯乙烯模板
外文關鍵詞:mono-layerordered porouspolystyrene template
相關次數:
  • 被引用被引用:1
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
規則性多孔洞材料已廣泛地被應用於許多領域,許多製作技術也陸續被開發來創造更複雜的特性以利更廣泛的用途。物理模板製作技術在傳統上已可達巨孔洞特性與尺寸(> 130 nm)的要求,而化學製造技術在次微米及奈米尺度(< 70 nm)上特性的應用則有其相當重要的地位。為達到更進一步複雜結構,發展具有可調控層數及孔洞大小能力的奈米技術,以製造高度規則化多孔洞結構材料是目前研究的重點。
本研究的主要目的在於利用聚苯乙烯為模板分子,配合自然沈降法讓聚苯乙烯粒子以自組裝方式排列成規則結構後,再以旋轉塗佈技術將溶膠凝膠(sol-gel)溶液填入模板分子間的孔隙,以發展可調控層數及孔洞大小的規則化多孔洞結構技術。藉著改變模組分子的大小,可將孔洞尺寸延伸至70 – 130 nm的範圍內,同時改變聚苯乙烯的濃度以達到製作多層(3D)以及單層(2D)的規則多孔洞材料。而使用之溶膠凝膠技術,採取四甲基矽氧烷(Si(OCH3)4, 98%, TMOS)當作前驅物,再經過水解、縮合與膠化的過程,轉變成二氧化矽的材料。溶膠凝膠的過程,是從奈米的晶粒凝聚成塊材,在晶粒時可容易的填入模板之間的空隙。熱分析 (TG)結果顯示,聚苯乙烯分子在280 – 320 �aC可內完全移除,因此500 �aC的鍛燒溫度即可製作出多孔洞結構材料。掃瞄式電子顯微鏡(SEM)表面型態觀察結果發現,藉由改變不同大小粒徑的聚苯乙烯分子,以及控制適當環境溫度及調整溶劑蒸發速率,可成功製作出孔洞大小為90 - 1000 nm的高度規則性六方最密堆積結構。而改變聚苯乙烯懸浮液的濃度,則可進行單層與多層結構的控制,此結果和理論計算結果相當吻合。原子力顯微鏡(AFM)的觀察結果明確單層與多層規則孔洞的存在,所配製的規則孔洞大小則略小於所添加之模板分子,而480 nm模板分子間的壁厚約為70 nm。從BET的測量,可瞭解此材料有高度的比表面積,可知不只是形成的巨孔洞,在結構上有許多的微孔洞。此些結果顯示,本研究成功發展出具有調控規則性多孔洞結構能力的製作技術,並可將孔洞尺寸延伸至90 – 1000 nm之間,對於製作生物感測器所需之單層結構或光子晶體與催化劑所需之多層結構,均相當具有的發展潛能。
Porous materials have recently received much attention due to its application in a wide variety of fields such as biosensors, catalysis, and photonic crystal. Several methods have been successfully developed for the preparation of porous materials. The physical method using template is the most often used technique to attain the macroscopic features (> 130 nm) of the highly ordered porous materials. Whereas the chemical methods have made significant contributions to the nanoscopic length scales (< 70 nm). However, the fabrication of highly ordered porous structures in a controlled process leading to the fabrication of tunable structures for different applications has received less attention.
The purpose of this study was to fabricate the highly ordered porous materials with tunable morphologies for different applications. Physical template method using polystyrene (PS) as the template at diameters of 90 – 1000 nm was used. Sol-gel materials using tetramethylorthosiliane (TMOS) as the precursor was employed to fill the voids between the microspheres. After hydrolysis, condensation and gelation process, TMOS became SiO2. The number of layers (mono- or multi- layer) and the size of pore were obtained by simply changing the concentration of suspension solution and the size of polystyrene template. Thermogravimetric analysis (TGA) revealed that the polystyrene microspheres can be completely removed at 280 – 320 �aC, and thus calcination at 500�aC is sufficient to fabricate the highly ordered porous structure. SEM images clearly showed the highly ordered porous structures arranged mainly in hexagonal closed-pack plane lattices. Addition suitable concentration of polystyrene suspension solution can fabricate ordered 2D porous structure (monolayer), while addition of high volume of polystyrene microspheres resulted in the formation of highly ordered 3D porous structures. Moreover, AFM results showed the topography of the mono- and multi-layer ordered porous structures. The distance between two spherical cavities was about 70 nm, clearly depicting the nanocrystalline property of SiO2 in the porous structure. Results obtained in this study demonstrate the feasibility of the developed nanotechnology fin fabricating the highly ordered 2D and 3D porous materials with tunable pore sizes. This technology can be used to fabricate the 2D porous structure for biosensor or to prepare the highly ordered 3D porous structure for the application of catalysis and photonic crystal.
Chapter 1 Introduction
1-1 Motivation…………………………………………………………………………….. 1
1-2 Objective………………………………………………………………………………. 3
Chapter 2 Background
2-1 Background……………………………………………………………………………. 4
2-2 Synthesis opal structure………………………………………………………………...8
2-2-1 Sedimentation ……………………………………………………………………. 8
2-2-2 Filtration …………………………………………………………………………. 8
2-2-3 Vertical deposition ……………………………………………………………….. 10
2-2-4 Langmuir-Blodgett method………………………………………………………. 11
2-2-5 surfactant self-assembly monolayers (SAMs)……………………………………. 12
2-3 Preparation of porous structures……………………………………………………….14
2-3-1 Chemical vapor deposition (CVD) ……………………………………………….14
2-3-2 Electrochemical deposition……………………………………………………….15
2-3-3 Nanocrystal infilling………………………………………………………………16
2-3-4 Dipping …………………………………………………………………………... 17
2-3-5 Filtration…………………………………………………………………………..18
2-4 MEMS method………………………………………………………………………... 19
2-4-1 Nanoimprinting Lithography-NIL………………………………………………... 19
2-4-2 Etching …………………………………………………………………………… 19
2-5 Application…………………………………………………………………………….. 21
2-5-1 Optical application……………………………………………………………….. 21
2-5-2 Biosensor application…………………………………………………………….. 21
2-5-3 Catalytic application……………………………………………………………… 22
2-6 Sol-Gel process……………………………………………………………………... 23
Chapter 3 Experimental details
3-1. Reagents and Materials………………………………………………………………. 26
3-2 Experimental design………………………………………………………………….. 26
3-3. Fabrication of opal film……………………………………………………………… 28
3-3-1 Spin coating……………………………………………………………………… 29
3-3-2 Deposition method……………………………………………………………….. 29
3-4 Preparation of porous structures………………………………………………………. 31
3-4-1 Preparation of sol solution………………………………………………………... 31
3-4-2 Infiltration sol solution…………………………………………………………… 31
3-5 Analytical instruments ……………………………………………………………… 33
3-5-1 Thermo-Gravimetric Analyzer (TGA)………………………………………….. 33
3-5-2 Scanning electron microscopy (SEM)…………………………………………… 33
3-5-3 Atomic Force microscopy (AFM)……………………………………………….. 33
3-5-4 UV-visible……………………………………………………………………….. 34
3-5-5 BET analysis……………………………………………………………………... 34

Chapter 4 Results and Discussion
4-1 Optimization Sol-Gel process…………………………………………………………. 36
4-2 Thermo-Gravimetric Analyzer (TGA)………………………………………………… 38
4-3 Fabrication of porous structure by spin-coating method……………………………… 40
4-4 Effect of cationic surfactant on ordered porous structure……………………………... 45
4-5 2D ordered porous materials by deposition method………………………………… 48
4-6 3D ordered porous materials by deposition method…………………………………. 57
4-7 Atomic Force Microscope (AFM)…………………………………………………….. 61
4-8 UV-Visible……………………………………………………………………………. 67
4-9 BET analysis…………………………………………………………………………... 68
Chapter 5 Conclusions……………………………………………………………….... 70
[1] E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059.
[2] S. John, Phys. Rev. Lett. 1987, 58, 2486.
[3] Y. Liu, W. Ren, L. Zhang, X. Yao, Thin Solid Films, 1999, 353, 124-128.
[4] H. Yan, K. Zhang, C. F. Blanford, L. F. Francis, A. Stein, Chem. Mater. 2001, 13, 1374-1482.
[5] W. Qian, Z.-Z. Gu, A. Fujishima, O. Sato, Langmuir, 2002, 18, 4526.
[6] J. Lu, Q.-D. Zeng, C. Wang, Q.-Y. Zheng, L. Wana, C. Bai, J. Mater. Chem., 2002, 12, 2856.
[7] B.T. Holland, C.F. Blanford, T. Do, A. Stein, Chem. Mater., 1999, 11, 795-805.
[8] P. N. Bartlett, P. R. Birkin, M. A. Ghanem, Chem. Commun., 2000, 17, 1671.
[9] S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müllerb, R. Zentel, Synth. Met., 2001, 116, 475.
[10] M. Miiller, R. Zentel, T. Maka, S. G.. Romanov, C. M. Sotomayor Torres, Adv. Mater. 2000, 12, 1499-1503.
[11] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin,O. Toader, H.M. van-Driel, Nature, 2000, 405, 437-440.
[12] Y. Xia, B. Gates, Z.-Y. Li, Adv. Mater., 2001, 13, 409-413.
[13] F. Bresson, C. -C. Chen, G. –C. Chi, Y. –W. Chen, Appl. Surf. Sci., 2003, 217, 281
[14] D. Comorettoa, R. Grassib, F. Marabellib and L.C. Andreanib, Mat. Sci. Eng. C, 2003, 23, 61
[15] Z.-Ze Gu, A. Fujishima, O. Sato, Chem. Mater., 2002, 14, 760-765.
[16] M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, D. Whitehead, Thin Solid Films, 2003, 437, 276-279.
[17] O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, Nature, 1999, 401, 548-548.
[18] O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff, Chem. Mater. 1998, 10, 3597-3602.
[19] L. Xu, W. L. Zhou, C. Frommen, R. H. Baughman, A. A. Zakhidov, L. M, J.-Q. Wang, J. B. Wiley, Chem. Commun., 2000, 997.
[20] P. Ni, P. Dong, B. Cheng, X. Li, D. Zhang, Adv. Mater. 2001, 13, 437-441.
[21] M. C. Carbajo, A. Gómez, M. J. Torralvo, E. Enciso, J. Mater. Chem., 2002, 12, 2740.
[22] P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, E. W. Kaler, Adv. Mater. 2001, 13, 396-400.
[23] S. Sokolov, D. Bell, A. Stein, J. Am. Ceram. Soc., 2003, 86, 1481.
[24] D. Comoretto, F. Marabelli, C.Soci, M.Galli, E. Pavarini, M.Patrini, L.C. Andreani, Synth. Met., 2003, 139, 633.
[25] Z.-Z. Gu, S. Kubo, A. Fujishima and O. Sato, Appl. Phys. A , 2002, 74, 127-129.
[26] P. Jiang, J. Cizeron, J. F. Bertone, V. L. Colvin, J. Am. Chem. Soc. 1999, 121, 7957-7958.
[27] P. V. Braun, P. Wiltzius, Nature, 1999, 402, 603-604.
[28] O. D. Velev, A. M. Lenhoff, Cur. Opin. Colloid Interface Sci., 2000, 5, 56-63.
[29] Brian T. Holland et al., Science, 1998, 281, 538-540.
[30] J. D. Joannopoulos, Nature, 2001, 414, 257-258.
[31] Z.-Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Angew. Chem. Int. Ed., 2002, 41, 1153.
[32] Michael C. Petty, Langmuir-Blodgett films, 1996, Plenum Press, New York.
[33] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710-711.
[34] J. Liu, X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, and M. Gong Adv. Mater., 1998, 10, 161-165.
[35] A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, Z. Iqbat, Nanostructured Materials, 1999, 12, 1089-1095.
[36] A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, Z. Iqbat, C. Cui, I. Khayrullin , S. O. Dantas, J. Marti, V. G. Ralchenko, Science, 1998, 282, 897-901.
[37] O. D. Velev, and E. W. Kaler, Adv. Mater. 2000, 12, 531-534.
[38] H. Yan, K. Zhang, C.F. Blanford, L.F. Francis, A. Stein, Chem. Mater. 2001, 13, 1374-1382.
[39] P. V. Braun, P. Wiltzius, Adv. Mater, 2001, 13, 482-485.
[40] P. V. Braun, P. Wiltzius, Nature, 1999, 402, 603-604.
[41] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science, 1998, 282, 2244-2246.
[42]A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin,H.M. Janssen, R.P. Sijbesma, Microelect. Eng., 2002,61, 371-377.
[43] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, Jim Bur, Nature, 1998, 394, 251-253.
[44] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science, 2000, 289, 604-606.
[45] J. G. Fleming, S. Y. Lin, Optics Letters, 1999, 24, 49
[46] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, Solid State Commun., 1994, 89, 413.
[47] http://ab-initio.mit.edu/photons/
[48] http://www.nano-tek.org/glossary/dico/Adsorption_(gas).html
[49] Y. Liu, W. Ren, L. Zhang, Xi Yao, Thin Solid Films, 1999, 353, 124-128.
[50] P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, S. M. Underwood, Phys. Rev. Lett. 1989, 63, 2753.
[51] J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. Russel, P. M. Chaikin, Nature, 1997, 387, 883-885.
[52] A. Cai, H. Zhang, H. Hua, Z. Zhang, Nanotechnology, 2002, 13, 627–630.
[53] S. Ludwigs, A. BÖker, A. Voronov, N. Rehese, R. Magerle, G. Krausch, Nature Materials , 2003, 2, 744-747.
[54] B. T. Mayers, B. Gates, Y. Xia, Adv. Mater. 2000, 12, 1629-1632.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top