跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃筱傑
論文名稱:組織等效比例計數器應用於中子之微劑量研究
論文名稱(外文):Microdosimetry Study of Neutrons using the Tissue Equivalent Proportional Counter
指導教授:董傳中董傳中引用關係張似瑮
指導教授(外文):Chuan-Jong TungSzu-Li Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:59
中文關鍵詞:微劑量學組織等效比例計數器鉲252
外文關鍵詞:MicrodosimetryTissue Equivalent Proportional Counter (TEPC)Californium 252
相關次數:
  • 被引用被引用:2
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
自1950年代起,為了分析輻射與介質作用時能量沉積的微觀分佈,美國Rossi教授便提出了微劑量學(microdosimetry)相關理論及實驗方法。約在1960年時,為了度量微劑量學參數, Rossi教授製作了第一個球形組織等效比例計數器(tissue equivalent proportional counter, TEPC),日後也成為度量微劑學參數的標準偵檢器。目前國際上對於此類偵檢器已有深入的研究,亦有應用於太空中宇宙射線量測、環境輻射監測、民航機上的人員劑量評估…等。相較於國內,僅有本實驗室與英國聖安德魯斯大學(St. Andrews university)合作,設計製作了兩支球形組織等效比例計數器,相關的微劑量學實驗研究也不多。因此本論文利用核能研究所(Institute of Nuclear Energy Research, INER)之鉲252(252Cf)射源,建立整套量測系統及實驗方法,並對兩支組織等效比例計數器之特性做一探討,希望可作為日後相關研究之參考。
本論文中使用了高壓供應器(high voltage supply)、低雜訊前置放大器(preamplifier)、線性放大器(linear amplifier)、多頻道分析器(multiple channel analyzer, MCA)、鋂-241(241Am)校正射源,及核能研究所鉲252(252Cf)中子射源等設備。實驗中在不同距離及不同角度對鉲252裸射源做量測,以便對距離及角度依存性做一探討,並將鉲252裸射源之能譜與文獻比較,以驗證所得能譜之正確性;另外,亦分別量測加了不同厚度水假體及加重水球後之鉲252微劑量學能譜。
由這一系列之實驗可以發現,現有的計數器在使用上會有其限制,未來首要之務便是找出漏電流的真正原因,並加以解決,方能提昇計數器之效能;而一號計數器則需再做更詳細的測試,方能應用於其他研究之上。。
目錄 1
圖目錄 3
表目錄 6
摘要 7
一、前言 9
二、微劑量學與微劑量學能譜 12
2.1機率量與非機率量 12
2.2微劑量學參數 12
2.3微劑量學能譜的表示法 16
2.4單能中子射束之微劑量學能譜 19
三、實驗設備 21
3.1量測系統 21
3.2組織等效比例計數器 22
3.2.1組織等效塑膠 24
3.2.2組織等效氣體 25
3.2.3陽極 26
3.2.4工作電壓 26
3.3微小體積之模擬 26
3.4氣體充填系統 28
3.5鉲252中子射源 29
3.5.1鉲252中子射源與照射場 29
3.5.2鉲252微劑量學能譜 35
四、結果與討論 36
4.1能量校正 36
4.2資料分析 39
4.3鉲252射源量測結果 41
4.3.1距離及角度依存性 42
4.3.2鉲252裸射源之微劑量學能譜 45
4.3.3不同厚度水假體之鉲252微劑量學能譜 49
4.3.4半徑15公分重水球之鉲252微劑量學能譜 51
4.3.5一號與二號組織等效比例計數器之比較 53
五、結論與未來工作 56
5.1結論 56
5.2未來工作 57
六、參考文獻 58
[1] Dessauer F., Uber einige Wirkungen von Strahlen. I., Z. Phys. 12, 38, 1922.
[2] Crowther I. A., Some considerations relative to the action of X-rays on tissue cells, Proc. Roy. Soc. 96, 207, 1924.
[3] Jordan P., Uber die elementarprozesse der biologischen strahlenwirkung, Radiologica(Berlin)2, 16 and 166, 1938.
[4] Lea D. E., Actions of radiation on living cells, 1946(University Press, Cambridge)
[5] Zirkle R. E., Marchbank D. F. and Kuck K. D., Exponential and sigmoid survival curves resulting from alpha and x-irradiation of Aspergillus spores, J. Cell. Comp. Physiol. 39, Suppl. 1, 75, 1952.
[6] Wilson, K. S. J., Field, S. B., Measurement of LET spectra using a spherical tissue-equivalent proportional counter, Phys. Med. Biol., Vol. 15, No.4, 657-666, 1970.
[7] Srdoc, D., Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters, Radiat. Res., 43, 302-319, 1970.
[8] Dicello J. F., Gross W. and Kraljevic U., Radiation quality of californium-252, Phys. Med. Biol. 17, 345, 1972.
[9] George D. Oliver, Quam W. M., Wilde W. O., Empirical dose quality distributions of californium-252, Health Physics Pergamon Press, 22, pp. 341-349, 1972.
[10] Kliauga P., Dvorak R., Microdosimetric measurements of ionization by monoenergetic photons, Radiat. Res., 73, 1-20, 1978.
[11] Rossi H. H., Microscopic energy distribution in irradiated matter, Radiation Dosimetry, 43-92, 1967.
[12] Glass W. A., Braby L. A., A wall-less detector for measuring energy deposition spectra, Radiat. Res., 39, 230-240, 1969.
[13] Burmeister J., Kota C. and Maughan R. L., Paired miniature tissue-equivalent proportional counters for dosimetry in high flux epithermal neutron capture therapy beams, Nucl. Instrum. Methods Phys. Res. A 422, 606-610, 1999.
[14] International Atomic Energy Agency. Current status of neutron capture therapy. IAEA-TECODOC-1223. Vienna Austria. 2001.
[15] International Commission on Radiation Units and Measurements, Radiation quantities and units. Report 33. Washington D.C., USA. 1980.
[16] International Commission on Radiation Units and Measurements, Microdosimetry. Report 36. Bethesda, Maryland, USA. 1980.
[17] Rossi H., Zaider M., Microdosimetry and its applications, Springer, NY, U.S.A., 1996.
[18] Nunomiya T., Kim E., Kurosawa T. et al, Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter, Radiation Protection Dosimetry, Vol. 102, No.1, pp. 49-59, 2002.
[19] Waker, A. J. Principles of experimental microdosimetry. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 297-308, 1995.
[20] Fano, U. Note on the Bragg-Gray cavity principle for measuring energy dissipation. Rad. Res. Vol. 1, 237-240, 1954.
[21] Braby L. A., Johnson G. W. and Barthe J., Practical considerations in the design and construction of tissue-equivalent proportional counters. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 351-379, 1995.
[22] International Commission on Radiation Units and Measurements, Neutron dosimetry for biology and medicine. Report 26, Washington, U.S.A., 1977.
[23] International Commission on Radiation Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Report 39, Bethesde, Maryland, U.S.A., 1985.
[24] Waker, A. J. Gas gain characteristics of some walled proportional counters used in microdosimetry. Proc. 8th Symposium on microdosimetry. EUR 8375 (Luxembourg: CEC) Vol. 1, pp.1017-1030, 1981.
[25] Prince A., Brookhaven National Laboratory Report No. BNL 50168 (T530), 1969.
[26] Gerdung, S., Pihet, P., Grindborg, J. E., Roos, H., Schrewe, U. J. and Schuhmacher, H. Operation and application of tissue equivalent proportional counters. Radiat. Prot. Dosim. 61, 381-404, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top