跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李中陽
研究生(外文):Chung-Yang Lee
論文名稱:自組裝奈米材料及奈米碳管純化之研究
論文名稱(外文):Study of self-assembly nano-materials and the purification of carbon nanotubes
指導教授:朱鐵吉
指導教授(外文):Tieh-Chi Chu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:118
中文關鍵詞:奈米碳管微波自組裝
外文關鍵詞:carbon nanotubemicrowaveself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
奈米碳管(carbon nanotubes)至今已被發現有十年之久了,它具有非常獨特的特性,例如像是儲氫能力、化學感應器、電子元件、或是平面場發式顯示器等。現今,最廣泛合成奈米碳管的方法有雷射蒸氣法、電弧法、和化學氣相沉積法等。然而在合成的過程之中,會使用到金屬催化劑(Fe、Co、Ni),或是金屬合金(Fe-CO、 Fe-Ni),這些都有可能會一起出現在奈米碳管的成品中,因而會減損奈米碳管的電性以及其結構上的特性,因此發展一個新的高效純化奈米碳管的方法和技術是很重要的。目前已有數種純化奈米碳管的技術被發展出來,例如化學氧化、熱氧化、過濾、層析等方法;然而,這些方法不是相當費時,就是需要相當高溫。為此,我們希望能在短的時間條件下以準確控制各項反應條件,來達成我們想要純化奈米碳管的目的,因此我們使用微波來協助加熱。微波方法有多項優點,例如在微波消化瓶中我們可以加入相對於較大量的樣品和較小量的試劑體積,微波能快速穩定的升溫、定溫來提供適當的反應溫度,或是提供適當的壓力,以符合實驗需求。雖然,微波有這麼多的優點,但是目前尚未有人使用此方法來純化奈米碳管。
一維的奈米線、棒、帶和管等,因為其特有的應用性質以及在奈米元件組裝上的潛力,目前已被深入的投入研究中。它們在聯繫電子、光電、電化學和微機電等方面被期待去扮演一個重要的角色。最近已有很多組裝一維奈米線的方法像是蒸氣液體生長法(vapor-liquid-solid,VLS)、溶液液體生長法(solution-liquid-solid,SLS)、 液體加熱法(solventhemal)和模板法(template)等被陸續發展出來。而在這些方法中,以模板法是最容易控制奈米線的形狀和大小。於此,研究上我們使用一個簡單的奈米碳管模板去自組裝銀奈米線的方法,以驗證此方法在製造一維奈米材料的潛力。
由於金屬粒子的隨著尺寸的降低,其特殊的光、電和磁的應用潛力,以廣泛的受到重視,像是應用在製造生物晶片(biochip)或生化感測器等(biosensor)。最近,已有多種合成奈米粒子的方法被報導出來,像是氣相沉積法(precipitation)、溶膠凝膠法(Sol-Gel)、電化學法(electrochemical)等。然而,這些方法多需複雜的合成步驟;為此,我們提出一個新的技術去藉奈米碳管來簡單、快速、穩定的合成奈米粒子。
Abstract
Carbon nanotubes (CNTs) were discovered a decade ago and have received much attention for their potential applications, which include hydrogen storage, chemical sensors, nanoelectronic devices, and flat-panel field-emission displays. To date, the most widely used synthetic methods for preparing nanotubes include laser vaporization, arc-discharge, and chemical vapor deposition. Metal catalysts, such as Fe, Co, and Ni and metal alloys (e.g., Fe-Co and Fe-Ni), are sometimes used during these syntheses. The impurities typically present in as-prepared carbon nanotubes These defects, present either along the walls of the graphitic tubes or entangled within them, can reduce the electrical and structural properties of the nanotubes. Consequently, it is important to develop an efficient method for purification of the nanotubes that causes no damage. Various methods for purifying carbon nanotubes have been reported, including chemical oxidation, thermal oxidation, filtration, and chromatography. These techniques, however, are time-consuming and have high thermal budgets. Recently, microwave-assisted heating has received much attention because of its high sample throughput, small reagent volumes, reliable control over amenable temperatures and pressures. Despite the versatility of microwave techniques, they have not been used previously to purify samples of carbon nanotubes.
One-dimensional nanostructures such as wires, rods, belts, and tubes have become the focus of intensive research owing to their unique applications in mesoscopic physics and fabrication of nanoscale devices. They are also expected to play an important role as both interconnects and functional units in fabricating electronic, optoelectronic, electrochemical, and electromechanical devices with nanoscale dimensions. Recently, many methods to fabricate nanowires have being developed1 like vapor-liquid-solid (VLS) methods, solution-liquid-solid (SLS) methods, solventhermal methods and template methods. Among those methods, the template methods are easier to control the shape and size of nanowires based on the morphology of template. Herein, we report a simple nanowires synthesis method by carbon nanotubes as a template coupled with nanoparticles self-assembly processes.
With the reduced sizes the metal-particles, nanoparticles have highly placed importance on their unique applied potential in applied optics, electrical, and magnetism, such as fabricating biochip and biosensor. Lately, many methods to fabricate nanoparactiles have being developed like precipitation methods, sol-gel methods, and electrochemical methods. However, these methods need many complicated steps to synthesis. For this, we report a new technique to simple, rapid and stable nanoparticles synthesis method by carbon nanotubes.
第六章 參考文獻
[1] S. Iijima, Nature 1991, 354, 56.
[2] 成會明, 奈米碳管, 五南圖書, 2004.
[3] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature, 1997, 388, 756
[4] V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, Chem. Phys. Lett. 1994, 223, 329.
[5] 馬振基, 奈米材料科技原理與應用, 全華科技圖書, 2003.
[6] 朱屯等, 奈米材料技術, 五南圖書, 2003.
[7] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 1996, 273, 483.
[8] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 1998, 67, 29.
[9] T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, Nature 1994, 367, 519.
[10] H. Hiura, T.W. Ebbesen, K. Tanigaki, Adv. Mater. 1995, 7, 275.
[11] S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C.J. Eklund, Phys. Chem. B 1997, 101, 8839.
[12] K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, C.B. Huff-man, R.E. Smalley, Chem. Phys. Lett. 1998, 282, 429.
[13] P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 1997, 278, 100.
[14] P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Appl. Surf. Sci. 1999, 141, 201.
[15] W.A. Deheer, A. Chatelain, D. Ugarte, Science 1995, 270, 1179.
[16] Q. Wang, H.A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 1998, 72, 2912.
[17] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 2000, 287, 1801.
[18] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 2000, 287, 622.
[19] A.M. Morales, C.M. Lieber, Science 1998, 297, 208.
[20] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 1964, 4,89
[21] H.M. Kingston, Stephen J. Haswell, Microwave-Enhanced Chemisrty, American Chemical Society, Washington, DC, 1997
[22] E. Nest, M. Collins, Introduction to microwave sample preparation theory and practice, 1998
[23] 陳力俊等, 材料電子顯微鏡學, 國科會精儀中心, 2000
[24] JB Jackson, SL Westcott, LR Hirsch, N. J. Halas, Applied Physics Letters, 2003, 82, 257.
[25] B.B. Liu, T. Wagberg, E. Olsson, R.S. Yang, H.D. Li, S.L. Zhang, H.B. Yang, G.T. Zou, B. Sundqvist, Chem. Phys. Lett. 2000, 320, 365.
[26] M. Monthiouz, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 2001, 39, 1251
[27] Jeong-Mi Moon, Kay Hyeok An, and Young Hee Lee, J. Phys. Chem. B 2001, 105, 5677
[28] P.X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng, Carbon 2002, 40, 81
[29] H. Hiura, T. Ebbesen, H. Tanighaki, Chem. Phy. Lett. 1993, 202, 509
[30] Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu and Y. H. Lee, Carbon 2001, 39, 655.
[31] R. Andrews, D. Jacques, D. Qian, E. C. Dickey, Carbon 2001, 39, 1681.
[32] Y. Sato, T. Ogawa, K. Motomiya, K. Shinoda, B. Jeyadevan, K. Tohji, A. Kasuya and Y. Nishina, J. Phys. Chem. B 2001, 105, 3387.
[33] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla and M. J. Heben, Adv. Mater. 1999, 11, 1354.
[34] W. Zhou, Y. H. Ooi, R. Russo, P. Papanek, D. E. Luzzi, J. E. Fischer, M. J. Bronikowski, P. A. Willis and R. E. Smalley, Chem. Phys. Lett. 2001, 350, 6.
[35] C. M. Yang, K. Kaneko, M. Yudasaka and S. Iijima, Physica B 2002, 323, 140.
[36] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro and I. Kiricsi, Solid State Ion. 2001, 141, 203.
[37] C. H. Liang, G. W. Meng, L. D. Zhang, N. F. Shen, X. Y. Zhang, Journal of Crystal Growth 2000, 218, 136.
[38] S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Adv. Mater. 2000, 12, 1430
[39] S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 1993, 362, 520.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top