跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梅若恩
研究生(外文):R.A. Maithreepala
論文名稱:表面結合鐵與銅離子對氯化有機物還原脫氯反應之研究
論文名稱(外文):Synergistic Effect of Copper ions on the Reductive Dechlorination of Chlorinated Hydrocarbons by Surface-Bound Iron Species
指導教授:董瑞安
指導教授(外文):Ruey-an Doong
學位類別:博士
校院名稱:國立清華大學
系所名稱:原子科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:288
中文關鍵詞:表面結合鐵還原脫氯銅離子氧化鐵四氯化碳氯化碳氫化合物
外文關鍵詞:surface-bound iron speciesdechlorinationcopper speciesiron oxidescarbon petrachloridechlorinated hydrocarbons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:2
no chinese abstract
The dechlorination of chlorinated aliphatic hydrocarbons including carbon tetrachloride (CT), tetrachloroethane (PCE) and trichloroethene (TCE) by different types of Fe(II)/Fe(III) systems and the synergistic effect of Cu(II) ions on the dechlorination were investigated. The well-crystalline goethite (a-FeOOH), hematite (a-Fe2O3), magnetite (Fe3O4) and amorphous ferrihydrite (Fe(OH)3) were associated with dissolved Fe(II) to form surface-bound iron species those were found to be reactive under anoxic conditions. X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) were used to characterize the chemical states and crystal phases of solid phases, respectively. Also, scanning electron microscopy (SEM) was employed to identify the surface morphology of the solid phases. CT was not dechlorinated by dissolved Fe(II) or iron oxides at neutral pH. However, significant dechlorination of CT was observed at pH 7.2 when Fe(II) was associated with iron oxides. The dechlorination followed pseudo first-order kinetics and the rate constants (kobs) for CT dechlorination ranged between 0.0144 and 0.836 h-1 in the Fe(II)-iron oxide suspensions. Chloroform (CF) was identified as the major product during the dechlorination processes, depicting that reductive dechlorination is the dominant degradation pathway of CT by surface-bound iron species. Also, the kobs for CT dechlorination mainly depended on pH and surface-bound Fe(II) concentration. A linear relationship between surface-bound Fe(II) concentration and the kobs was established. The pH of the surface-bound Fe(II) system strongly influenced the rate and efficiency of dechlorination processes and the kobs was exponentially increased with increasing pH ranging from 4 to 8.5. A similar relationsip between pH and surface –bound Fe(II) concentration also found indicating that the pH effect on the dechlorination efficiency is mainly due to the variation in the surface-bound Fe(II) concentration.
The efficiency and rate of CT dechlorinated was significantly enhanced by the amendment of Cu(II) into the suspension of iron oxide and Fe(II). The kobs values for CT dechlorination were 119, 100, 30 and 3 times greater than those without Cu(II) in the magnetite, goethite, hematite and ferrihydrite suspensions, respectively at pH 7.2. A linear relationship between kobs for CT dechlorination and the concentration of Cu(II) was observed when the amended Cu(II) concentration was lower than 0.5 mM. Moreover, the kobs for CT dechlorination was dependent on the initial Fe(II) concentration in the 0.5 mM Cu(II)-amended goethite system and followed a Langmuir-Hinshelwood relationship. The synergistic effect of Cu(II) in the Fe(II)/Fe(III) systems is primarily attributed to formation of secondary mineral phases was observed. When Cu(II) was added into Fe(II) solution in the absence of other iron oxide minerals, the oxidation of Fe(II) into Fe(III) coupling with Cu(II) reduction to form a new mineral phase. XRD and XPS analysis suggested that this solid phase contained amorphous ferrihydrite and Cu2O. When the initial Fe(II)/Cu(II) ratios in the solution varied from 1 to 10, the kobs for CT dechlorination increased 250-fold and the produced secondary minerals also changed from ferrihydrite to goethite and hematite and then again ferrihydrite.
Cu(II) ion also has the synergistic effect on the dechlorination of chlorinated hydrocarbons in the presence of green rust and biogenic iron oxides. The addition of Cu(II) in to the green rust suspension effectively dechlorinated chlorinated methanes (CT, CF) and chlorinated ethenes (PCE, TCE). The kobs for dechlorination increased by 84 times for CT, 4.7 times for PCE and 7 times for TCE. XRD and XPS results showed that the oxidation of green rust chloride(GR(Cl)) to magnetite resulted in the reduction of Cu(II) to Cu(0) and Cu(I). In the presence of Geobacter sulfurreducens, ferrihydrite can be biologically dissoluted to produce Fe(II) and magnetite, resulting in the formation of biogenic Fe(II)-Fe(III) system for the dechlorination of chlorinated hydrocarbons. Addition of Cu(II) also enhanced the dechlorination of CT by biogenic Fe(II) under microbial Fe(III) reducing condition. Results obtained in this study give impetus that Cu(II) can increase the reductive dechlorination process led by natural Fe(II) systems in the subsurface conditions for the natural attenuation of highly chlorinated compounds or engineered systems that facilitate the in-situ cleanup of chlorinated hydrocarbons using Fe(II)/Fe(III) systems.
Acknowledgement. ………………………….…………………………………………... i
ABSTRACT…………………………………………………………………………….... iii
Content index ……………………………………………………………………………. vi
Figure Index………………………………………………………………………… …... xii
Table index ……………………………………………………………………………... xxii
CHAPTER 1.GENERAL INTRODUCTION…………………………………………… 1
1.1 BACKGROUND AND THEORY…………………………………………... 2
1.1.1 Introduction ………………………………………………………… 2
1.1.2 Iron oxides …………………………………………………………. 5
1.1.3 Microbial Fe(III) reduction…………………………………………. 7
1.1.4 Electron shuttling compounds to facilitate the microbial Fe(III) reduction…………………………………………………………………… 10
1.1.5 Interaction of dissolved Fe(II) ions with iron minerals……………... 14
1.1.6 Reduction of contaminants by surface-bound Fe(II)………………... 20
1.1.7 Degradation kinetics of the contaminants by surface-bound Fe(II) systems…………………………………………………………………….. 24
1.1.8 Factors controlling the reactivity of heterogeneous Fe(II)/Fe(III) aqueous systems…………………………………………………………… 26
1.1.8.1 pH value. …………………………………………………………. 26
1.1.8.2 Remodeling time of Fe(II) at Fe(III) mineral surface ……………... 27
1.1.8.3 Sorbed Fe(II) concentration………………………………………... 28
1.1.9 Reactivity of Fe(II)/Fe(III) systems towards dechlorination of chlorinated compounds …………………………………………………… 28
1.2 MOTIVATION……………………………………………………………… 37
1.3 OBJECTIVES ………………………………………………………………. 39
1.4 EXPERIMENTAL PLAN …………………………………………………... 40
1.5 REFERENCES…………………………………………………………….… 41

CHAPTER 2. DECHLORINATION OF CARBON TETRCHLORIDE
BY FERROUS ION ASSOCIATED WITH VARIOUS IRON OXIDE MINERALS…. 51
ABSTRACT ……………………………………………………………………... 52
2.1 INTRODUCTION…………………………………………………………… 53
2.2 MATERIALS AND METHODS……………………………………………. 56
2.2.1 Chemicals ……………………………………………………………. 66
2.2.2 Preparation of anoxic water and anoxic solutions …………………... 56
2.2.3 Synthesis and characterization of iron oxide minerals……………… 57
2.2.4 Dechlorination Experiments………………………………………… 60
2.2.5 Fe(II) and Cu(II) sorption experiments……………………………… 61
2.2.6 Analytical Methods………………………………………………….. 61
2.3 RESULTS AND DISCUSSION……………………………………………... 63
2.3.1 Characterization of iron oxide minerals……………………………... 63
2.3.2 Sorption of Fe(II) onto iron oxide minerals………………………… 69
2.3.4 Dechlorination of CCl4 by surface-bound Fe system……………….. 74
2.3.5 Effect of pH on the dechlorination of CCl4 by goethite…………….. 79
2.3.6 Effect of Fe(II) on the dechlorination of CT in goethite system…… 82
2.3.7 Effect of goethite concentration…………………………………….. 84
2.3.8 Dechlorination of CCl4 by surface-bound Fe(II) species in the presence of Cu(II)………………………………………………………….. 87
2.3.9 Reduction of chloroform by Cu(II) catalyzed surface bound Fe(II) systems……………………………………………………………………. 91
2.3.10 The sorption of Cu(II) on iron minerals…………………………… 94
2.4 ENVIRONMENTAL SIGNIFICANCE……………………………………. 99
2.5 SUMMARY………………………………………………………………… 100
2.6 REFERENCES............................................................................................... 101

CHAPTER 3. REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE BY SURFACE-BOUND FERROUS IONS ASSOCIATED WITH GOETHITE………. 105
ABSTRACT……………………………………………………………………… 106
3.1 INTRODUCTION…………………………………………………………... 107
3.2 MATERIALS AND METHODS……………………………………………. 109
3.2.1 Chemicals…………………………………………………………….. 109
3.2.2 Dechlorination Experiments…………………………………………. 110
3.2.3 Analytical Methods………………………………………………….. 111
3.3 RESULTS AND DISCUSION………………………………………………. 113
3.3.1 Effect of transition metal ions on CT degradation…………………… 113
3.3.2 Effect of pH on CT dechlorination…………………………………... 117
3.3.3 Effect of Cu (II) concentration on CT dechlorination……………….. 121
3.3.4 Effect of Fe(II) on CT dechlorination……………………………….. 130
3.5 ENVIRONMENTAL SIGNIFICANCE ……………………………………. 134
3.4 SUMMARY…………………………………………………………………. 135
3.6 REFERENCES………………………………………………………………. 137

CHAPTER4. REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE IN AQUEOUS SOLUTIONS CONTAINING FEROUS AND COPPER IONS……….. 141
ABSTRACT……………………………………………………………………… 143
4.1 INTRODUCTION…………………………………………………………… 145
4.2 MATERIALS AND METHODS…………………………………………….. 147
4.2.1 Chemicals…………………………………………………………….. 147
4.2.2 Dechlorination Experiments…………………………………………. 147
4.2.3 Analytical Methods…………………………………………………... 148
4.3 RESULTS AND DISCUSSION……………………………………………... 150
4.3.1 Concentration effect of Cu(II) on CCl4 dechlorination in the presence of 3 mM Fe(II)……………………………………………………………... 150
4.3.2 Concentration effect of Fe(II) on CCl4 dechlorination in the presence of 0.5 mM Cu(II)…………………………………………………………… 151
4.3.3 Change in morphology of chemogenic solids at various Fe/Cu ratios. 158
4.3.4 Effect of pH………………………………………………………….. 166
4.4 ENVIRONMENTAL SIGNIFICANCE ……………………………………. 171
4.5 SUMMARY…………………………………………………………………. 173
4.6 REFERENCES……………………………………………………………… 174

CHAPTER5. ENHANCED DECHLORINATION OF CHLORINATED METHANES AND ETHENES BY GREEN RUST WITH COPPER IONS…………………... 177
ABSTRACT……………………………………………………………………… 178
5.1 INTRODUCTION…………………………………………………………… 180
5.2 MATERIALS AND METHODS…………………………………………….. 182
5.2.1 Chemicals…………………………………………………………….. 182
5.2.2 Synthesis and characterization of GR(Cl)……………………………. 183
5.2.3 Quantification of GR(Cl) concentration……………………………... 184
5.2.4 Dechlorination Experiments………………………………………... 185
5.2.5 Analytical techniques………………………………………………… 186
5.3 RESULTS AND DISCUSSION……………………………………………... 188
5.3.1 Dechlorination of CT by GR(Cl)…………………………………….. 188
5.3.2 Dechlorination of chlorinated ethenes by GR(Cl)…………………… 191
5.3.3 Concentration effect of Cu(II)……………………………………….. 192
5.3.4 Solid-phase analysis of GR(Cl)–Cu(II) suspension…………………. 199
5.3.5 Effect of pH on PCE dechlorination…………………………………. 203
5.3.6 The concentration effect of GR(Cl) on PCE dechlorination………… 209
5.3.7 The effect of target organic (PCE) concentration…………………… 209
5.4 ENVIRONMNTAL SIGNIFICANCE………………………………………. 216
5.5 SUMMERY…………………………………………………………………. 217
5.6 REFERENCES……………………………………………………………… 219
CHAPTER 6.REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE BY BIOGENIC FERROUS SPECIES UNDER MICROBIAL IRON REDUCING CONDITIONS BYGeobacter sulfurreducens…………………………………………… 223
ABSTRACT……………………………………………………………………… 224
6.1 INTRODUCTION…………………………………………………………… 225
6.2 MATERIALS AND METHODS…………………………………………….. 228
6.2.1 Chemicals……………………………………………………………. 228
6.2.2 Microorganism and Cultivation……………………………………… 229
6.2.3 Fe(III) reduction experiments………………………………………... 230
6.2.4 Dechlorination experiments………………………………………….. 231
6.2.5 Analytical methods…………………………………………………... 231
6.3 RESULTS AND DISCUSSION……………………………………………... 232
6.3.1 Reduction of various Fe(III) oxides by Geobacter sulfurreducens…. 232
6.3.2 Abiotically reductive dechlorination of CT under microbial Fe(III) reducing condition…………………………………………………………. 234
6.3.3 Influence of copper ions on the growth of G. sulfurreducens and the microbial Fe(III) reduction………………………………………………… 237
6.3.4 Dechlorination of CT in the presence of Cu(II) under microbial Fe(III) reducing condition………………………………………………….. 239
6.3.5 Microbial reduction of Fe(III)oxides using AQDS as electron shuttling compound………………………………………………………… 244
6.3.6 Dechlorination of carbon tetrachloride under microbial Fe(III) reducing condition using AQDS as electron shuttling compound…………. 247
6.3.7 Effect of Cu(II) ion on the dechlorination of carbon tetrachloride under microbial Fe(III) reducing condition using AQDS as electron shuttling compound………………………………………………………… 254
6.4 ENVIRONMENTAL SIGNIFICANCE……………………………………... 265
6.5 SUMMARY…………………………………………………………………. 267
6.6 REFERENCES………………………………………………………………. 268
CHAPTER 7. CONCLUSIONS…………………………………………………………. 273
CONCLUSIONS………………………………………………………………… 274
APPENDIX ……………………………………………………………………………… 279
(1) Stroo, H. F.; Unger, M.; Ward, C. H.; Kavanaugh, M. C.; Vogel, C.; Leeson, A.; Marqusee, J. A.; Smith, B. P. Environ Sci Technol 2003, 37, 224a-230a.
(2) Henry, S. M.; Hardcastle, C. H.; Warner, S. D. Chlorinated Solvents and DNAPL Remediation 2003, 837, 1-20.
(3) Beck, P. Geosci Can 1996, 23, 22-40.
(4) Buschmann, J.; Angst, W.; Schwarzenbach, R. P. Environ Sci Technol 1999, 33, 1015-1020.
(5) Von Düszeln, J. T., W. Sci. Total Environ. 1985, 41, 187-194.
(6) Nowell, L. H.; Hoigne, J. Water Res 1992, 26, 593-598.
(7) Roberts, A. L.; Gschwend, P. M. J Contam Hydrol 1994, 16, 157-174.
(8) Anon.A.R. Hazardous Waste Cons 1994, 12, A30-A32.
(9) Rogers, L. Ground Water 1992, 30, 50-60.
(10) Mackay, D.; Shiu, W. Y.; Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals (vol)3; Lewis Publishers,121, Chelsea, Michigan 48118, 1993.
(11) Deutsh, W. J. Groud water geochemistry: Fundamentals and applications to contamination; CRC press, Lewis Publishers: Washington,D.C., 1997.
(12) Vogel, T. M.; Criddle, C. S.; Mccarty, P. L. Environ Sci Technol 1987, 21, 722-736.
(13) Holliger, C.; Schraa, G.; Stams, A. J. M.; Zehnder, A. J. B. Appl Environ Microb 1993, 59, 2991-2997.
(14) Holliger, C.; Schumacher, W. Anton Leeuw Int J G 1994, 66, 239-246.
(15) Holliger, C.; Schraa, G. FEMS Microbiol Rev 1994, 15, 297-305.
(16) McCarty, P. L. Science 1997, 276, 1521-1522.
(17) Krumholz, L. R.; Sharp, R.; Fishbain, S. S. Appl Environ Microbiol 1996, 62, 4108-4113.
(18) Assaf-Anid, N.; Lin, K. Y. J Environ Eng-Asce 2002, 128, 94-99.
(19) Chiu, P. C.; Reinhard, M. Abstr Pap Am Chem Socity 1995, 209, 65-Envr.
(20) Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L. Environ Sci Technol 1996, 30, 3047-3052.
(21) Curtis, G. P.; Reinhard, M. Environ Sci Technol 1994, 28, 2393-2401.
(22) Kriegmanking, M. R.; Reinhard, M. Environ Sci Technol 1992, 26, 2198-2206.
(23) Butler, E. C.; Hayes, K. F. Environ Sci Technol 1999, 33, 2021-2027.
(24) Butler, E. C.; Hayes, K. F. Environ Sci Technol 1998, 32, 1276-1284.
(25) Weerasooriya, R.; Dharmasena, B. Chemosphere 2001, 42, 389-396.
(26) Estes, T. J.; Vilker, V. L. J Colloid Interf Sci 1989, 133, 166-175.
(27) Hofstetter, T. B.; Schwarzenbach, R. P.; Haderlein, S. B. Environ Sci Technol 2003, 37, 519-528.
(28) Schwertmann, U.; Fitzpatrick, R. W. Iron minerals in surface environment in "Biomineralization Process of Iron and Manganese (Eds. Skinner, H. C.W. and Fitzpatrick, R. W.); Catena: Cremlingen, 1992.
(29) Cornell, R. M.; Schwertmann, U. The Iron oxides-Structure, properties, Reactions, Occurrence and Uses; VCH: Weinheim, 1996.
(30) Lyngkilde, J.; Christensen, T. H. J Contam Hydrol 1992, 10, 273-289.
(31) Lyngkilde, J.; Christensen, T. H. J Contam Hydrol 1992, 10, 291-307.
(32) Schwertmann, U.; Cornell, R. M. Iron Oxides in the Laboratory:preparation and characterization, pp 1-18; VCH,: Weinheim, 1991.
(33) Straub, K. L.; Benz, M.; Schink, B. Fems Microbiol Ecol 2001, 34, 181-186.
(34) Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. Abstract Paper in American Chemical Society , Divison of Environmental Science 1997, 213, 189.
(35) Elsner, M.; Schwarzenbach, R. P.; Haderlein, S. B. Environ Sci Technol 2004, 38, 799-807.
(36) Andreeva, D.; Mitov, I.; Tabakova, T.; Mitrov, V.; Andreev, A. Mater Chem Phys 1995, 41, 146-149.
(37) Sun, T. C.; Paige, C. R.; Snodgrass, W. J. J Univ Sci Technol B 1999, 6, 168-173.
(38) Paige, C. R.; Snodgrass, W. J.; Nicholson, R. V.; Scharer, J. M.; He, Q. H. Water Air Soil Poll 1997, 97, 397-412.
(39) Sun, T. C.; Paige, C. R.; Snodgrass, W. J. Water Air Soil Poll 1996, 91, 307-325.
(40) Lovley, D. R.; Phillips, E. J. P.; Lonergan, D. J. Environ Sci Technol 1991, 25, 1062-1067.
(41) Lovley, D. R. FEMS Microbiol Rev 1997, 20, 305-313.
(42) Vargas, M.; Kashefi, K.; Blunt-Harris, E. L.; Lovley, D. R. Nature 1998, 395, 65-67.
(43) Straub, K. L.; Buchholz-Cleven, B. E. E. Int J Syst Evol Microbiol 2001, 51, 1805-1808.
(44) Jr, F. C.; Lonergan, D. J.; Loveley, D. R.; Davis, M.; Stolz, J. F.; McInerney, M. J. App. Environ. Mcrobiol. 1994, 60, 3752-3759.
(45) Doong, R. A.; Schink, B. Environ Sci Technol 2002, 36, 2939-2945.
(46) Lloyd, J. R.; Sole, V. A.; Van Praagh, C. V. G.; Lovley, D. R. Appl Environ Microbiol 2000, 66, 3743-3749.
(47) Liu, C. X.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F. Biotechnology and Bioengineering 2002, 80, 637-649.
(48) Lin, W. C.; Coppi, M. V.; Lovley, D. R. Appl Environ Microbiol 2004, 70, 2525-2528.
(49) Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D. Acta Hydroch Hydrobiol 1998, 26, 152-157.
(50) Ortiz-Bernad, I.; Anderson, R. T.; Vrionis, H. A.; Lovley, D. R. Appl Environ Microbiol 2004, 70, 3091-3095.
(51) Lovley, D. R.; Giovannoni, S. J.; White, D. C.; Champine, J. E.; Phillips, E. J. P.; Gorby, Y. A.; Goodwin, S. Arch Microbiol 1993, 159, 336-344.
(52) Caccavo, F.; Blakemore, R. P.; Lovley, D. R. Appl Environ Microbiol 1992, 58, 3211-3216.
(53) Myers, C. R.; Myer, J. M. J. Bacteriol. 1997, 17, 1143-1152.
(54) Kostka, J. E.; Nealson, K. H. Environ Sci Technol 1995, 29, 2535-2540.
(55) Kostka, J. E.; Dalton, D. D.; Skelton, H.; Dollhopf, S.; Stucki, J. W. Appl Environ Microbiol 2002, 68, 6256-6262.
(56) Burgos, W. D.; Fang, Y. L.; Royer, R. A.; Yeh, G. T.; Stone, J. J.; Jeon, B. H.; Dempsey, B. A. Geochim Cosmochim Acta 2003, 67, 2735-2748.
(57) Finneran, K. T.; Johnsen, C. V.; Lovley, D. R. Int J Syst Evol Microbiol 2003, 53, 669-673.
(58) Kashefi, K.; Holmes, D. E.; Baross, J. A.; Lovley, D. R. Appl Environ Microbiol 2003, 69, 2985-2993.
(59) Lonergan, D. J.; Jenter, H. L.; Coates, J. D.; Phillips, E. J. P.; Schmidt, T. M.; Lovley, D. R. J Bacteriol 1996, 178, 2402-2408.
(60) Finster, K.; Bak, F. Appl Environ Microbiol 1993, 59, 1452-1460.
(61) Dobbin, P. S.; Warren, L. H.; Cook, N. J.; McEwan, A. G.; Powell, A. K.; Richardson, D. J. Microbiol-Uk 1996, 142, 765-774.
(62) Dobbin, P. S.; Carter, J. P.; San Juan, C. G. S.; von Hobe, M.; Powell, A. K.; Richardson, D. J. FEMS Microbiol Lett 1999, 176, 131-138.
(63) Lovley, D. R. Microbiol Rev 1991, 55, 259-287.
(64) Lovley, D. R.; Phillips, E. J. P. Appl Environ Microbiol 1988, 54, 1472-1480.
(65) Arnold, R. G.; Dichristina, T. J.; Hoffmann, M. R. Biotechnol Bioeng 1988, 32, 1081-1096.
(66) Lovley, D. R.; Coates, J. D.; BluntHarris, E. L.; Phillips, E. J. P.; Woodward, J. C. Nature 1996, 382, 445-448.
(67) Seeliger, S.; Cord-Ruwisch, R.; Schink, B. J Bacteriol 1998, 180, 3686-3691.
(68) Straub, K. L.; Schink, B. Fems Microbiol Lett 2003, 220, 229-233.
(69) Sisley, M. J.; Jordan, R. B. Inorg Chem 1995, 34, 6015-6023.
(70) Santana-Casiano, J. M.; Gonzalez-Davila, M.; Rodriguez, M. J.; Millero, F. J. Mar Chem 2000, 70, 211-222.
(71) Amirbahman, A.; Sigg, L.; vonGunten, U. J Colloid Interf Sci 1997, 194, 194-206.
(72) Lovley, D. R.; Anderson, R. T. Hydrogeol J 2000, 8, 77-88.
(73) Trivedi, P.; Axe, L.; Dyer, J. Colloid Surface A 2001, 191, 107-121.
(74) Zhang, Y.; Charlet, L.; Schindler, P. W. Colloid Surface 1992, 63, 259-268.
(75) Charlet, L.; Silvester, E.; Liger, E. Chem Geol 1998, 151, 85-93.
(76) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D.; Royer, R. A. Colloid Surface A 2001, 191, 41-55.
(77) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D. Environ Sci Technol 2003, 37, 3309-3315.
(78) Stumm, W.; Morgan, J. J. Aquatic chemistry.3rd Ed.; John Wiley & Sons, Inc.: New York, 1996. pp 425-613.
(79) Truon, T. N.; Johnson, M. A.; Stefanovich, V. Elecronic Structure and Chmical Reactivity of Metal Oxide-Water nterfacs; In Solid-Liquid Interface Theory (Halley,J. W. Ed.) ACS symposium series 789, American Chemical Society.: Washington, DC., 2001. pp124-141.
(80) Farley, K. J.; Dzombak, D. A.; Morel, F. M. M. J Colloid Interf Sci 1985, 106, 226-242.
(81) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D.; Royer, R. A.; Roden, E. E. Water Res 2004, 38, 2499-2504.
(82) Millero, F. J. Geochim Cosmochim Acta 1985, 49, 547-553.
(83) Grenthe, I.; Stumm, W.; Laaksuharju, M.; Nilsson, A. C.; Wikberg, P. Chem Geol 1992, 102, 297-297.
(84) Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H. L.; Onstott, T. C.; Hinman, N. W.; Li, S. M. Geochim Cosmochim Acta 1998, 62, 3239-3257.
(85) McCormick, M. L.; Adriaens, P. Environ Sci Technol 2004, 38, 1045-1053.
(86) McCormick, M. L.; Bouwer, E. J.; Adriaens, P. Environ Sci Technol 2002, 36, 403-410.
(87) Kukkadapu, R. K.; Zachara, J. M.; Fredrickson, J. K.; Smith, S. C.; Dohnalkova, A. C.; Russell, C. K. Am Mineral 2003, 88, 1903-1914.
(88) Ona-Nguema, G.; Abdelmoula, M.; Jorand, F.; Benali, O.; Gehin, A.; Block, J. C.; Genin, J. M. R. Environ Sci Technol 2002, 36, 16-20.
(89) Glasauer, S.; Weidler, P. G.; Langley, S.; Beveridge, T. J. Geochim Cosmochim Acta 2003, 67, 1277-1288.
(90) Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.; Fendorf, S. Geochim Cosmochim Acta 2003, 67, 2977-2992.
(91) Parmar, N.; Gorby, Y. A.; Beveridge, T. J.; Ferris, F. G. Geomicrobiol J 2001, 18, 375-385.
(92) Pecher, K.; Kneedler, E. M.; Tonner, B. P. Abstract Paper in American Chemical Society 1999, 217, 292-294.
(93) Bernal, J. D.; Dasgupta, D. R.; Mackay, A. L. Caly. Min. Bull. 1959, 4, 15-25.
(94) Mann, S.; Sparks, N. H. C.; Couling, S. B.; Larcombe, M. C.; Frankel, R. B. J Chem Soc Farad T 1 1989, 85, 3033-&.
(95) Satapanajaru, T.; Shea, P. J.; Comfort, S. D.; Roh, Y. Environ Sci Technol 2003, 37, 5219-5227.
(96) Coughlin, B. R.; Stone, A. T. Environ Sci Technol 1995, 29, 2445-2455.
(97) Stone, A. T.; Coughlin, B. R. Environ Sci Technol 1996, 30, 1412-1412.
(98) Stumm, W.; Sulzberger, B. Geochim Cosmochim Ac 1992, 56, 3233-3257.
(99) Wehrli, B.; Sulzberger, B.; Stumm, W. Chem Geol 1989, 78, 167-179.
(100) Scheinost, A. C.; Abend, S.; Pandya, K. I.; Sparks, D. L. Environ Sci Technol 2001, 35, 1090-1096.
(101) Gantzer, C. J.; Wackett, L. P. Environ Sci Technol 1991, 25, 715-722.
(102) Li, S. Y.; Wackett, L. P. Biochemistry-Us 1993, 32, 9355-9361.
(103) Heijman, C. G.; Grieder, E.; Holliger, C.; Schwarzenbach, R. P. Environ Sci Technol 1995, 29, 775-783.
(104) Klausen, J.; Trober, S. P.; Haderlein, S. B.; Schwarzenbach, R. P. Environ Sci Technol 1995, 29, 2396-2404.
(105) Rugge, K.; Hofstetter, T. B.; Haderlein, S. B.; Bjerg, P. L.; Knudsen, S.; Zraunig, C.; Mosbaek, H.; Christensen, T. H. Environ Sci Technol 1998, 32, 23-31.
(106) Hofstetter, T. B.; Heijman, C. G.; Haderlein, S. B.; Holliger, C.; Schwarzenbach, R.P. Environ Sci Technol 1999, 33, 1479-1487.
(107) Sorensen, J.; Thorling, L. Geochim Cosmochim Acta 1991, 55, 1289-1294.
(108) Haderlein, S. B.; Pecher, K. kinetics and Mechanisms of Reactions at the Mineral/Water Interface;; Americal Chemical Society: Washington, DC,, 1998.
(109) Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A. Environ Sci Technol 2000, 34, 4606-4613.
(110) Haderlein, S. B.; Elsner, M.; Erbs, M.; Hofstetter, T.; Pecher, K.; Schwarzenbach, R. P. Geochim Cosmochim Acta 2002, 66, A301-A301.
(111) Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. Environ Sci Technol 2002, 36, 1734-1741.
(112) Elsner, M.; Haderlein, S. B.; Kellerhals, T.; Luzi, S.; Zwank, L.; Angst, W.; Schwarzenbach, R. P. Environ Sci Technol 2004, 38, 2058-2066.
(113) Buerge, I. J.; Hug, S. J. Environ Sci Technol 1999, 33, 4285-4291.
(114) Cui, D. Q.; Eriksen, T. E. Environ Sci Technol 1996, 30, 2259-2262.
(115) Liger, E.; Charlet, L.; Van Cappellen, P. Geochim Cosmochim Acta 1999, 63, 2939-2955.
(116) Strathmann, T. J.; Stone, A. T. Geochim Cosmochim Acta 2003, 67, 2775-2791.
(117) Vikesland, P. J.; Valentine, R. L. Environ Sci Technol 2000, 34, 83-90.
(118) Doong, R. A.; Wu, S. C. Chemosphere 1992, 24, 1063-1075.
(119) Swallow, K. C.; Hume, D. N.; Morel, F. M. M. Environ Sci Technol 1980, 14, 1326-1331.
(120) Kim, S.; Picardal, F. W. Environ Toxicol Chem 1999, 18, 2142-2150.
(121) Lee, W.; Batchelor, B. Environ Sci Technol 2002, 36, 5147-5154.
(122) Hansen, H. C. B.; Borggaard, O. K.; Sorensen, J. Geochim Cosmochim Acta 1994, 58, 2599-2608.
(123) Lee, W.; Batchelor, B. Environ Sci Technol 2002, 36, 5348-5354.
(124) Erbs, M.; Hansen, H. C. B.; Olsen, C. E. Environ Sci Technol 1999, 33, 307-311.
(125) O'Loughlin, E. J.; Kemner, K. M.; Burris, D. R. Environ Sci Technol 2003, 37, 2905-2912.
(126) O'Loughlin, E. J.; Burris, D. R. Environ Toxicol Chem 2004, 23, 41-48.
(127) Williams, A. G. B.; Scherer, M. M. Environ Sci Technol 2001, 35, 3488-3494.
(128) Loyaux-Lawniczak, S.; Refait, P.; Lecomte, P.; Ehrhardt, J. J.; Genin, J. M. R. Hydrol Earth Syst Sc 1999, 3, 593-599.
(129) Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J. J.; Lecomte, P.; Genin, J. M. R. Environ Sci Technol 2000, 34, 438-443.
(130) Johnson, T. M.; Bullen, T. D. Geochim Cosmochim Acta 2003, 67, 413-419.
(131) O'Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.; Kemner, K. M. Environ Sci Technol 2003, 37, 721-727.
(132) Hansen, H. C. B.; Guldberg, S.; Erbs, M.; Koch, C. B. Appl Clay Sci 2001, 18, 81-91.
(133) Schwarzenbach, R. P.; Angst, W.; Holliger, C.; Hug, S. J.; Klausen, J. Chimia 1997, 51, 908-914.
(134) Maithreepala, R. A.; Doong, R. A. Environ Sci Technol 2004, 38, 260-268.
(135) Arnold, W. A.; Roberts, A. L. Environ Sci Technol 2000, 34, 1794-1805.
(136) Kenneke, J. F.; Weber, E. J. Environ Sci Technol 2003, 37, 713-720.
(137) Riley, R. G.; Zachara, J. M.; Wobber, F. J. Chemical contaminants on DOE Lands and selection of Contaminent Mixtures for Subsurface Science Research;DOE/ER-0547T; U.S. Department of Energy, Washington DC. 1992.
(138) Buerge-Weirich, D.; Sulzberger, B. Environ Sci Technol 2004, 38, 1843-1848.
(139) Flogeac, K.; Guillon, E.; Aplincourt, M. Environ Sci Technol 2004, 38, 3098-3103.
(140) Schlimm, C.; Heitz, E. Environ Prog 1996, 15, 38-47.
(141) Lewis, T. A.; Paszczynski, A.; Gordon-Wylie, S. W.; Jeedigunta, S.; Lee, C. H.; Crawford, R. L. Environ Sci Technol 2001, 35, 552-559.
(142) Shcheltsyn, L. V.; Brailovskii, S. M.; Temkin, O. N. Kinet Catal 1990, 31, 1191-1200.
(143) Chien, Y. C.; Wang, H. P.; Yang, Y. W. Environ Sci Technol 2001, 35, 3259-3262.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [7] 邱上真(1989):知識結構的評量:概念構圖技巧的發展與試用,特殊教育學報,第4期,頁215-244。
2. [4] 余民寧、潘雅芳、林偉文 (1996),概念構圖法:合作學習抑個別學習,國立政治大學教育與心理研究,19期,頁93-124。
3. [3] 余民寧、陳嘉成、潘雅芳(1996),概念構圖法在測驗教學上的應用,中國測驗學會測驗年刊,43輯,頁195-212。
4. 彭仁桂(1992b)。我國現階段辦理技能檢定暨建立證照之我見。就業與訓練,10(2), 86-90。
5. 彭仁桂(1992a)。我國現階段辦理技能檢定暨建立證照之我見。就業與訓練,10(1),18-25。
6. 陳聰勝(1994)。當前推動技能檢定與證照制度的新政策措施。就業與訓練,12(1)。
7. 張波鋒(1984)。各國職業訓練制度的比較研究(一)。就業與訓練,2(4),31-40。
8. 康自立(1998)。加強技能檢定提升產業技術與服務品質。就業與訓練,15(4),3-5
9. 馬守智(1989)。我國技術士技能檢定規範之研訂與分級。就業與訓練,7(6),7-10。
10. 翁上錦(1997)。技能檢定術科測驗監評人員之角色與功能。就業與訓練,15(4),15-18。
11. 胡瑕玉(1992)。加強技能檢定建立技術士職業證照制度實施計畫之剖析與實踐。中國勞工,910,16-18。
12. 邱顯明(1992)。如何加速推動技能檢定一元化技術士証照制度。就業與訓練,10(5),17-21。
13. 林聰明(1997)。全面推動技能檢定落實職業證照制度。就業與訓練,15(3),65-70。
14. 林宜宏(1999)。台灣省技能檢定實務工作及其困境探討。勞工之友,580,20-22。
15. 彭仁桂(1995)。現行技能檢定措施之省思。就業與訓練,13(6),87-95。